-
Notifications
You must be signed in to change notification settings - Fork 4
/
retrain.py
138 lines (123 loc) · 6.26 KB
/
retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import torch
import torch.backends.cudnn as cudnn
from torchvision import models
from torch.utils.data import Subset
from data_aug.contrastive_learning_dataset import ContrastiveLearningDataset
from models.resnet import ResNetSimCLR
from models.resnet_big import SupConResNet
from simclr import SimCLR
import os
torch.manual_seed(0)
pathpre = f"/scratch/ssd004/scratch/{os.getenv('USER')}/checkpoint"
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch SimCLR')
parser.add_argument('-data', metavar='DIR',
default=f"/ssd003/home/{os.getenv('USER')}/data",
help='path to dataset')
parser.add_argument('--dataset', default='cifar10',
help='dataset name to train with',
choices=['stl10', 'cifar10', 'svhn', 'cifar100'])
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet34',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--fp16-precision', action='store_true',
help='Whether or not to use 16-bit precision GPU training.')
parser.add_argument('--out_dim', default=128, type=int,
help='feature dimension (default: 128). This is the dimension of z = g(h).')
parser.add_argument('--log-every-n-steps', default=200, type=int,
help='Log every n steps')
parser.add_argument('--temperature', default=0.07, type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--temperaturesn', default=100, type=float,
help='temperature for soft nearest neighbors loss')
parser.add_argument('--n-views', default=2, type=int, metavar='N',
help='Number of views for contrastive learning training.')
parser.add_argument('--gpu-index', default=0, type=int, help='Gpu index.')
parser.add_argument('--losstype', default='infonce', type=str,
help='Loss function to use')
parser.add_argument('--clear', default='False', type=str,
help='Clear previous logs', choices=['True', 'False'])
parser.add_argument('--array_id', type=int, default=0, help='slurm array id.')
parser.add_argument('--changeepochs', action='store_true',
help='use to adjust epochs based on array id instead of queries.')
num_samples = [5000, 10000, 20000, 50000]
num_epochs = [5, 10, 25, 50]
def main():
args = parser.parse_args()
if args.changeepochs:
args.epochs = num_epochs[args.array_id]
args.samples = 50000
else:
args.samples = num_samples[args.array_id]
#args.epochs = 100
assert args.n_views == 2, "Only two view training is supported. Please use --n-views 2."
# check if gpu training is available
if torch.cuda.is_available():
args.device = torch.device('cuda')
cudnn.deterministic = True
cudnn.benchmark = True
print("Gpu count", torch.cuda.device_count())
else:
args.device = torch.device('cpu')
args.gpu_index = -1
if args.losstype == "supcon":
args.lr = 0.05
if args.losstype == "softnn":
args.lr = 0.001
dataset = ContrastiveLearningDataset(args.data)
train_dataset = dataset.get_dataset(args.dataset, args.n_views)
train_dataset = Subset(train_dataset, range(args.samples))
print("len dataset", len(train_dataset))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
model = ResNetSimCLR(base_model=args.arch, out_dim=args.out_dim)
# Load stolen model.
checkpoint = torch.load(
f"{pathpre}/SimCLR/102resnet34infonceSTEAL/stolen_checkpoint_50000_infonce_svhn.pth.tar",
map_location=args.device) # manually set this.
# note that the head is added (randomly initialized) since the stolen model is not trained with one.
try:
state_dict = checkpoint['state_dict']
except:
state_dict = checkpoint
model.load_state_dict(state_dict, strict=False)
optimizer = torch.optim.Adam(model.parameters(), args.lr,
weight_decay=args.weight_decay)
if args.losstype == "supcon":
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(
train_loader), eta_min=0, last_epoch=-1)
# It’s a no-op if the 'gpu_index' argument is a negative integer or None.
with torch.cuda.device(args.gpu_index):
simclr = SimCLR(model=model, optimizer=optimizer,
scheduler=scheduler,
args=args, retrain=True, loss=args.losstype)
simclr.train(train_loader)
if __name__ == "__main__":
main()