Skip to content

Latest commit

 

History

History
159 lines (142 loc) · 7.22 KB

README.md

File metadata and controls

159 lines (142 loc) · 7.22 KB

Pipeline for evaluating actionable findings from VCF file

Prerequisites

Software needed

Data

  • AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.vcf.gz.*

Resources

  • GATK GRCh38 resource files (via FTP Server Access; see details here)

Create a pedigree file

  • Create a pedigree file with six columns
  1. Family ID (same as individual ID if unrelated)
  2. Individual ID
  3. Paternal ID (0 if founder)
  4. Maternal ID (0 if founder)
  5. Sex (2=Female; 1=Male)
  6. Phenotype (2=Case; 1=Control)
zcat AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.vcf.gz | head -5000 | egrep CHROM | \
  awk '{ for (i=10;i<=NF;++i) print $i,$i,0,0,2,1}' \
  > AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.vcf.ped

Prepare a dbSNP file by excluding variants after version 129

# specify the path to your gatk resource folder 
gatk_resources=<path>

refseq=$gatk_resources/Homo_sapiens_assembly38.fasta
dbsnp=$gatk_resources/dbsnp_146.hg38.vcf.gz

# remove variants after version 129 to evaluate TiTv (>3.0 for exome and >2.0 for genome)
bcftools filter -e "dbSNPBuildID>129" /psychipc01/disk2/references/GATK_hg38_bundle/dbsnp_146.hg38.vcf.gz | bgzip > $gatk_resources/dbsnp_146.hg38.excluding_sites_after_129.vcf.gz
tabix -p vcf -f $gatk_resources/dbsnp_146.hg38.excluding_sites_after_129.vcf.gz
dbsnp129=$gatk_resources/dbsnp_146.hg38.excluding_sites_after_129.vcf.gz

Variant Evaluation using GATK to determine the TiTv

./gatk --java-options "-Xms10g -Xmx10g" VariantEval \
   -R $refseq \
   --dbsnp $dbsnp129 \
   --eval AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.vcf.gz \
   -ped AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.ped \
   --no-st -ST Sample -ST Novelty -ST Filter \
   --no-ev -EV CountVariants -EV TiTvVariantEvaluator \
   --lenient \
   -O AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.VariantEval.gatk-report

Individual-based and variant-based quality control using PLINK

# PLINK2
plink2 --vcf /lustre1/u/u3579068/project/AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4_AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.vcf.gz \
  --double-id \
  --vcf-min-gq 20 \
  --vcf-min-dp 8 \
  --out AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCpos

plink2 --pfile AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCpos \
  --maf 0.05 \
  --geno 0.05 \
  --max-alleles 2 \
  --make-bed \
  --out AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCedpos.biallelic.maf05

# PLINK 1.9
plink --bfile AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCedpos.biallelic.maf05 \
  --indep-pairwise 200 50 0.2 \
  --out AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCedpos.biallelic.maf05.pruned 

plink --bfile AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCedpos.biallelic.maf05 \
  --extract AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCedpos.biallelic.maf05.pruned.prune.in \
  --genome \
  --out AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.QCedpos.biallelic.maf05.pruned 

KGGseq annotation

  • Allele frequency
  • In silico damaging scores
java -Xmx37g -jar kggseq.jar \
        --resource resources/ \
        --no-lib-check --buildver hg19 \
        --vcf-file /lustre1/u/u3579068/project/AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4_AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.vcf.gz \
        --seq-qual 30 --seq-mq 20 --gty-qual 20 --gty-dp 8 \
        --db-gene refgene --gene-feature-in 0,1,2,3,4,5,6,7,8,9,10 \
        --db-filter 1kg201204,1kgafr201204,1kgeur201204,1kgasn201204,1kgeur201305,1kgeas201305,1kgafr201305,ESP6500AA,ESP6500EA,exac,ehr,gadexome,gadgenome \
        --rare-allele-freq 1.1 \
        --db-score dbnsfp \
        --mendel-causing-predict best \
        --out AnVIL_CCDG_Broad_NP_Epilepsy_HKOSB_GRU_WES_Year4.impact \
        --nt 10       # number of nodes

Extract the Clinvar variants of genes of interest

Get the ncbi gene TSS and TSE from UCSC Table Browser (like the one introduced in BBMS2003

  • ucsc.hg19.ncbiRefSeq.22Oct2018.txt: record the gene information
  • ACMG_IFv3.0_new_n14.AD.genes: records the gene names of interest (one gene one row)
awk -F"\t" 'NR==FNR { gene[$1]++ } NR!=FNR && NR>1 && $3!~/_/ && $13 in gene { print $3"\t"$5"\t"$6"\t"$13 }' \
  ACMG_IFv3.0_new_n14.AD.genes \
  ucsc.hg19.ncbiRefSeq.22Oct2018.txt \
  | sort -k1,1 -k2,2g -k3,3g | uniq \
  > UCSC.ncbiRefSeq.hg19.ACMG_IFv3.0_new_n14.AD.chr_tss_tse.txt

Extract the Clinvar variants of genes by TSE and TSE

awk '{ gsub("chr","",$2); print $1,$2":"$3"-"$4 }' UCSC.ncbiRefSeq.hg19.ACMG_IFv3.0_new_n14.AD.chr_tss_tse.txt |  while read GENE CHRPOS; do 
  tabix /surgerypt04/disk1/References/Clinvar/clinvar_20211030.vcf.gz $CHRPOS > ClinVar/clinvar_20211030.ACMG_IFv3.0_new_n14.AD.$GENE.vcf
done

Extract the KGGseq annotation by gene (column 5 or 6; cannot remember)

  • write into ACMG_IFv3.0_new_n14.kggseqANNOT.kggseq_annot.protein-altering.maf05.AD.$GENE.txt

Record the chromosomal positions of the protein-altering variants from our data to bed file

cat ACMG_IFv3.0_new_n14.AD.genes | while read GENE; do 
  awk -F"\t" -v gene=$GENE 'BEGIN { OFS="\t" }{ varend=$2 } 
    $5==gene && ($6=="missense" || $6~/frameshift/ || $6~/stop/ || $6~/start/ || $6=="splicing"){ 
        if (length($3)>3){ split($3,ra,"/"); if (ra[2]~/+/) varend=$2+length(ra[2])-1  } 
        print $1,$2,varend,$1":"$2":"$3 }' \
          ACMG_IFv3.0_new_n14.kggseqANNOT.kggseq_annot.protein-altering.maf05.AD.$GENE.txt \
          > bed/kggseqannot.$GENE.protein-altering.bed
done

Record the chromosomal positions of protein-altering ClinVar variants to bed file

cat ACMG_IFv3.0_new_n14.AD.genes | while read GENE; do 
   awk -F"\t" 'BEGIN { OFS="\t" }{ afflength=(length($4)>length($5))?length($4):length($5); afflength; print $1,$2,$2+afflength-1,$3":"$4":"$5":"$8 }' \
      ClinVar/clinvar_20211030.ACMG_IFv3.0_new_n14.AD.$GENE.vcf \
      > ClinVar/clinvar_20211030.ACMG_IFv3.0_new_n14.AD.$GENE.bed
done

Record the overlapping variants

# module load BEDTools (search the exact name by module avail)
cat ACMG_IFv3.0_new_n14.AD.genes | while read GENE; do 
    bedtools window -a bed/kggseqannot.$GENE.protein-altering.bed -b ClinVar/clinvar_20211030.ACMG_IFv3.0_new_n14.AD.$GENE.bed -w 1 \
    | perl -lane '{ if ($F[7]=~/CLNSIG=([^,;]+);/){ if ($1=~/atho/){ print $_ } } }' \
    > ClinVar-vs-kggseq/ClinVar-vs-kggseq.ACMG_IFv3.0_new_n14.AD.wPatho.$GENE.protein-altering.txt
done

Merge the two sets of files together

cat ACMG_IFv3.0_new_n14.AD.genes | while read GENE; do
  awk 'NR==FNR { info[$1":"$2":"$3]=$0 } NR!=FNR && $4 in info { print $0"\t"info[$4] }' \
    ../ACMG_IFv3.0_new_n14.kggseqANNOT.kggseq_annot.protein-altering.maf05.AD.$GENE.txt \
    ClinVar-vs-kggseq.ACMG_IFv3.0_new_n14.AD.wPatho.$GENE.protein-altering.txt \
    > ClinVar-vs-kggseq.ACMG_IFv3.0_new_n14.AD.wPatho.$GENE.protein-altering.flt.txt; done