-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransition_functions.py
executable file
·513 lines (403 loc) · 22.8 KB
/
transition_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import numpy as np
import librosa
import get_features
import scipy.io as sio
# CONVENZIONE : nelle matrici di transizione / matrici di sigma, l'ultima dimensione è l'ouput, la prima / le prime sono gli input
n_key_modes = 4 # maj mixolidian dorian minor
n_chord_types = 2 # maj min
n_roots = 12
n_keys = n_key_modes * n_roots
n_chords = n_chord_types * n_roots
n_chords_and_no_chord = n_chords + 1
maj_chord_index = 0
min_chord_index = 1
maj_key_index = 0
mix_key_index = 1
dor_key_index = 2
min_key_index = 3
# DA CONTROLLARE
def Prevkey_To_Nextkey():
# da chordRecognition/ChordDetection/KeyTransModel.m
# da 4.2.5 Key Node
# params
gamma_c = 0.4
same_key_prob = 1
parallel_key_bonus = 4
diatonic_key_malus = 0.15
circle_fifth_distance = [0, 5, 2, 3, 4, 1, 6, 1, 4, 3, 2, 5]
# 1) first we compute the musicological based key transition
key_to_key = np.zeros((n_keys, n_keys))
# we use for computations indexes+1 (as in Matlab), for indexing we shift them for Python
for next_key_mode in range(1, n_key_modes+1):
for next_key_root in range(1, n_roots+1):
for prev_key_mode in range(1, n_key_modes+1):
for prev_key_root in range(1, n_roots+1):
prev_key_index = (prev_key_mode - 1) * n_roots + prev_key_root
next_key_index = (next_key_mode -1) * n_roots + next_key_root
prev_maj_key_equivalent = (prev_key_root + 5 * (prev_key_mode - 1)) % n_roots + 1
next_maj_key_equivalent = (next_key_root + 5 * (next_key_mode - 1)) % n_roots + 1
next_eq_to_prev_eq = (next_maj_key_equivalent - prev_maj_key_equivalent) % n_roots
if prev_key_index == next_key_index:
key_to_key[prev_key_index - 1, next_key_index - 1] = same_key_prob
else:
key_to_key[prev_key_index - 1, next_key_index - 1] = np.power(gamma_c, (circle_fifth_distance[next_eq_to_prev_eq + 1 - 1] + 1))
if next_key_root == prev_key_root: #parallel case
key_to_key[prev_key_index - 1, next_key_index - 1] = key_to_key[prev_key_index - 1, next_key_index - 1] * parallel_key_bonus
else:
if (prev_maj_key_equivalent - next_maj_key_equivalent) % n_roots == 0: #diatonic case
key_to_key[prev_key_index - 1, next_key_index - 1] = key_to_key[prev_key_index - 1, next_key_index - 1] * diatonic_key_malus
# normalization for stochastic row vectors
key_to_key_prob = np.zeros((n_key_modes*n_roots, n_key_modes*n_roots))
for i in range(0, n_keys):
key_to_key_prob[i, :] = key_to_key[i, :] / np.sum(key_to_key[i, :])
# 2) now compute key root salience vector= correlation between averaged chromagram and circular shift of key profile
return key_to_key_prob
# OK
def Key_To_Chord():
# da ChordRecognition/chordDetection/ChordGivenKeyModel.m
# da 4.2.6 Chord Node
# params
diatonic_prob = 1
tonic_chord = 2
characteristic_chord = 1.2
non_diatonic_primary_dominant = 0.5
diminished_chord = 0.7
epsilon = 0.7
no_chord_prob = 0.7
secondary_dominant_probability = 0.7
secondary_subdominant_probability = 0.7
# first build the diatonic chords matrix: 3 dimensions, maj min chord in maj mix dor min key
diatonic_chords = np.zeros((n_chord_types, n_key_modes, n_roots))
diatonic_chords[maj_chord_index, :, :] = [[tonic_chord, 0, 0, 0, 0, characteristic_chord, 0, 1, 0, 0, 0, 0],
[tonic_chord, 0, 0, 0, 0, 1, 0, 0, 0, 0, characteristic_chord, 0],
[0, 0, 0, 1, 0, characteristic_chord, 0, non_diatonic_primary_dominant, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, non_diatonic_primary_dominant, characteristic_chord, 0, 1, 0]]
diatonic_chords[min_chord_index, :, :] = [[0, 0, 1, 0, 1, 0, 0, 0, 0, characteristic_chord, 0, diminished_chord],
[0, 0, 1, 0, diminished_chord, 0, 0, characteristic_chord, 0, 1, 0, 0],
[tonic_chord, 0, characteristic_chord, 0, 0, 0, 0, 1, 0, diminished_chord, 0, 0],
[tonic_chord, 0, diminished_chord, 0, 0, characteristic_chord, 0, 1, 0, 0, 0, 0]]
secondary_dominant = np.array([[1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1],
[1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0],
[1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0]])
secondary_subdominant = np.array([[0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1]])
# in prob transition matrix we have keys in row, chords on columns
key_to_chord = np.zeros((n_keys, n_chords))
for key_mode in range(1, n_key_modes + 1):
for key_root in range(1, n_roots + 1):
for chord_root in range(1, n_roots + 1):
for chord_type in range(1, n_chord_types + 1):
prob = 0
key_index = (key_mode - 1) * n_roots + key_root
chord_index = (chord_type - 1) * n_roots + chord_root
chord_to_key = (chord_root - key_root) % n_roots + 1
prob = diatonic_chords[chord_type - 1, key_mode - 1, chord_to_key - 1] * diatonic_prob
# we transform probability in a tuple and the compute the max
if chord_type == (maj_chord_index + 1):
prob = [prob, secondary_dominant[key_mode - 1, chord_to_key - 1] * secondary_dominant_probability]
else:
if chord_type == (min_chord_index + 1):
prob = [prob, secondary_subdominant[key_mode - 1, chord_to_key - 1] * secondary_subdominant_probability]
key_to_chord[key_index - 1, chord_index - 1] = np.max(prob)
# no chord probability
no_chord_column = no_chord_prob * np.ones((n_keys, 1))
key_to_chord_no_chord = np.append(arr=key_to_chord, values=no_chord_column, axis=1)
# substitute all elements = 0 with epsilon
sel = (key_to_chord_no_chord == 0)
key_to_chord_no_chord[sel] = epsilon
key_to_chord_prob = np.zeros([n_keys, n_chords_and_no_chord])
# normalization for statistic row vectors
for i in range(0, n_keys):
key_to_chord_prob[i, :] = key_to_chord_no_chord[i, :] / np.sum(key_to_chord_no_chord[i, :])
return key_to_chord_prob
# NO
def Prevchord_Nextchord_To_Bass():
# da chordRecognition/chordDetection/BassGivenChordChangeModel
#params
no_chord_col = np.ones((1, n_roots))
bass_roots = n_roots
chord_template = get_features.Get_Chord_Binary_Model()
chord_template = np.append(arr=chord_template, values=no_chord_col, axis=0)
bass_prob = np.array([0.8, 0.2], dtype='float')
chord_to_bass = np.zeros((n_chords_and_no_chord, n_chords_and_no_chord, bass_roots), dtype='float')
for bass_note in range(0, bass_roots):
for this_chord in range(0, n_chords): # in this_cord dimension stop a index before, last column(xbass) will be empty
for prev_chord in range(0, n_chords_and_no_chord):
n_chord_notes = np.sum(chord_template[this_chord, :])
if this_chord == prev_chord: # we are staying on same chord
if (this_chord % 12) == bass_note: # bass chord is on root
chord_to_bass[prev_chord, this_chord, bass_note] = bass_prob[0] * 2 / (n_chord_notes + 1)
elif chord_template[this_chord, bass_note] == 1:
chord_to_bass[prev_chord, this_chord, bass_note] = bass_prob[0] * 1 / (n_chord_notes + 1)
else:
chord_to_bass[prev_chord, this_chord, bass_note] = bass_prob[1] * 1 / (13 - n_chord_notes)
else: # in case of chord change
if (this_chord % 12) == bass_note:
chord_to_bass[prev_chord, this_chord, bass_note] = bass_prob[0]
else:
chord_to_bass[prev_chord, this_chord, bass_note] = bass_prob[1] / (12 - 1)
# add the no_chord to the last columns: in case there is no chord before all bass roots are equiprobable
for prev_chord in range(0, n_chords_and_no_chord):
chord_to_bass[prev_chord, n_chords_and_no_chord - 1, :] = np.ones((1, 1, bass_roots)) / bass_roots
#normalization for statistic row vectors (CONTROLLA: NORMALIZZO L'ULTIMA DIMENSIONE cioè l'output (le righe nei casi precedenti)
chord_to_bass_prob = np.empty([n_chords_and_no_chord, n_chords_and_no_chord, bass_roots], dtype='float')
for prev_chord in range(0, n_chords_and_no_chord):
for next_chord in range(0, n_chords_and_no_chord):
chord_to_bass_prob[prev_chord, next_chord, :] = chord_to_bass[prev_chord, this_chord, :] / np.sum(chord_to_bass[prev_chord, this_chord, :])
return chord_to_bass
def Prevchord_Nextchord_to_Bass_MATLAB():
matrix = sio.loadmat('MATLAB matrici/BassTransProb.mat')
m = matrix['BassTransProb']
return m
# def Chord_To_Treble_Chromagram():
# # from chordRecognition/chordDetection/TrebleChromaGivenChordModel
# # without key dipendence
# # this dependence will produce the one between chord salience and chord
# # I'm going to compute the parameters for a gaussian distribution
# # in this implementation defaul sigma and chord sigma are both = 0.2 (therefore it's not useful), still
# # it's possible to change manually the parameters
#
# # params
# treb_chrom_size = n_roots
# key_is_maj = np.ones((1, 12))
# key_is_maj = np.append(arr=key_is_maj, values=np.zeros((1, n_keys - 12)))
# key_is_mix = np.roll(key_is_maj, 12)
# key_is_dor = np.roll(key_is_mix, 12)
# key_is_min = np.roll(key_is_dor, 12)
#
# chord_is_maj = np.ones((1,12))
# chord_is_maj = np.append(arr=chord_is_maj, values=np.zeros((1, n_chords - 12)))
# chord_is_min = np.roll(chord_is_maj, 12)
#
# chord_sigmas = [0.2, 0.2, 0.2]
# default_sigma = 0.2
#
# chord_template = np.transpose(get_features.Get_Chord_Binary_Model()) # for simplicity I tranpose the matrix
#
# mu = np.zeros((n_chords + 1, treb_chrom_size))
# sigma = np.zeros((n_chords + 1, treb_chrom_size, treb_chrom_size))
#
# for chord_ind in range(0, n_chords):
# mu[chord_ind, :] = chord_template[chord_ind, :]
# diag = default_sigma * np.ones((1, 12))
#
# if chord_is_maj[chord_ind]:
# chord_tones_sel = np.array([0, 4, 7]) # accordo maggiore
# else:
# if chord_is_min[chord_ind]:
# chord_tones_sel = np.array([0, 3, 7]) # accordi minore
#
# sel = np.zeros((1, 12), dtype=bool)
# sel[:,(chord_ind + chord_tones_sel) % 12] = True
#
# diag[sel] = chord_sigmas
# sigma[chord_ind, : , :] = np.diag(diag)
#
#
# # add the no_chord row
# mu[n_chords_and_no_chord - 1, :] = np.ones(treb_chrom_size)
# sigma[n_chords_and_no_chord - 1, :, :] = np.identity(treb_chrom_size)
#
# return mu, sigma
def Mode_To_Prevchord_Nextchord():
# from chordRecognition/ ChordDetection/ chordChangeGivenModeBak
# max diversa la seconda riga
# min ok
# mix diversa la seconds riga
# dor ok
#k1 = 10
#k2 = 15
k1 = 5
k2 = 10
k3 = 1
mode_to_chord_change = np.ones((n_key_modes, n_chords_and_no_chord, n_chords_and_no_chord))
# assign lower weight to transition from tonic, higher weight for transition toward tonic
# lower weight for transition without tonic
#Tonic no change
tonic_no_change = 10
# mode_to_chord_change[maj_key_index, 1, 1] = tonic_no_change
# mode_to_chord_change[mix_key_index, 1, 1] = tonic_no_change
mode_to_chord_change[dor_key_index, 1 + 12 - 1, 1 + 12 - 1] = tonic_no_change
mode_to_chord_change[min_key_index, 1 + 12 - 1, 1 + 12 - 1] = tonic_no_change
# major key
mode_to_chord_change[maj_key_index, 0, 5] = k1 # C -> F
mode_to_chord_change[maj_key_index, 0, 7] = k1 # C -> G
mode_to_chord_change[maj_key_index, 7, 0] = k2 # F -> C
#mode_to_chord_change[maj_key_index, 5, 0] = k2 # G -> C
mode_to_chord_change[maj_key_index, 5, 0] = k1 # G -> C
mode_to_chord_change[maj_key_index, 5, 7] = k1 # F -> C
mode_to_chord_change[maj_key_index, 7, 5] = k1 # C -> F
#mode_to_chord_change[maj_key_index, 3 + 12 - 1, 7] = k1 # Dmin ( 12 octave + 3 second -1) -> G
#mode_to_chord_change[maj_key_index, 10 + 12 - 1 , 0] = k2 # Am -> C
mode_to_chord_change[maj_key_index, 2, 7] = k3
mode_to_chord_change[maj_key_index, 4, 10 + 12 - 1] = k3
mode_to_chord_change[maj_key_index, 10, 3 + 12 - 1] = k3
# mixolidian key
mode_to_chord_change[mix_key_index, 0, 5] = k1 # C -> F
mode_to_chord_change[mix_key_index, 0, 10] = k1 # C -> Bb
# mode_to_chord_change[mix_key_index, 5, 0] = k2 # F -> C
mode_to_chord_change[mix_key_index, 5, 0] = k1
mode_to_chord_change[mix_key_index, 10, 0] = k2 # Bb -> C
mode_to_chord_change[mix_key_index, 10, 5] = k1 # Bb -> F
mode_to_chord_change[mix_key_index, 5, 10] = k1 # F -> Bb
# mode_to_chord_change[maj_key_index, 0, 8 + 12 - 1] = k2 # C -> Gm
# mode_to_chord_change[maj_key_index, 8 + 12 - 1, 0] = k2 # Gm -> C
#dorian key
mode_to_chord_change[dor_key_index, 1 + 12 - 1, 5] = k1 # Cm -> F
mode_to_chord_change[dor_key_index, 1 + 12 - 1, 3] = k1 # Cm -> Eb
mode_to_chord_change[dor_key_index, 5, 1 + 12 - 1] = k2 # F -> Cm
#mode_to_chord_change[dor_key_index, 3, 1 + 12 - 1] = k2 # Eb -> Cm
mode_to_chord_change[dor_key_index, 3, 1 + 12 - 1] = k1
mode_to_chord_change[dor_key_index, 3, 5] = k1 # Eb -> F
mode_to_chord_change[dor_key_index, 5, 3] = k1 # F -> Eb
# mode_to_chord_change[dor_key_index, 5, 10] = k1 # F -> Bb
# mode_to_chord_change[dor_key_index, 10, 5] = k1 # Bb -> F
#minor key
mode_to_chord_change[min_key_index, 1 + 12 - 1, 8] = k1 # Cm -> Ab
mode_to_chord_change[min_key_index, 1 + 12 - 1, 10] = k1 # Cm -> Bb
mode_to_chord_change[min_key_index, 8, 1 + 12 - 1] = k2 # Ab -> Cm
# mode_to_chord_change[min_key_index, 1 + 12 - 1, 10] = k2 # Bb -> Cm
mode_to_chord_change[min_key_index, 10, 1 + 12 - 1] = k1
mode_to_chord_change[min_key_index, 8, 10] = k1 # Ab -> Bb
mode_to_chord_change[min_key_index, 10, 8] = k1 # Bb -> Ab
#mode_to_chord_change[min_key_index, 6, 1 + 12 -1] = k2 # G -> Cm
#mode_to_chord_change[min_key_index, 1 + 12 - 1, 6] = k1 # Cm -> G
# make the matrix row statistich (normalization)
mode_to_chord_change_prob = np.empty([n_key_modes, n_chords_and_no_chord, n_chords_and_no_chord], dtype='float')
for mode in range(0, n_key_modes):
for prev_chord in range(0, n_chords_and_no_chord):
for next_chord in range(0, n_chords_and_no_chord):
if (np.sum(mode_to_chord_change[mode, prev_chord, : ] != 0)):
mode_to_chord_change_prob[mode, prev_chord, :] = mode_to_chord_change[mode, prev_chord, :] / np.sum(mode_to_chord_change[mode, prev_chord, :])
# symmetrize the matrix
# mode_to_chord_change_prob[maj_key_index, :, :] = (mode_to_chord_change_prob[maj_key_index, :, :] + mode_to_chord_change_prob[maj_key_index, :, :].transpose()) / 2
# mode_to_chord_change_prob[min_key_index, :, :] = (mode_to_chord_change_prob[min_key_index, :, :] + mode_to_chord_change_prob[min_key_index, :, :].transpose()) / 2
# mode_to_chord_change_prob[mix_key_index, :, :] = (mode_to_chord_change_prob[mix_key_index, :, :] + mode_to_chord_change_prob[mix_key_index, :, :].transpose()) / 2
# mode_to_chord_change_prob[dor_key_index, :, :] = (mode_to_chord_change_prob[dor_key_index, :, :] + mode_to_chord_change_prob[dor_key_index, :, :].transpose()) / 2
return mode_to_chord_change_prob
def Labels_To_Prevchord_NextchordMOD():
# dobbiao modificarla in modo che l'output sia una matrice di num_labels* chord * chord
# se il chord di partenza è uguale a quello di arrivo mettiamo la probabilità = 0?
# quando moltiplico per la probabilità data dalla chiave se è uguale a 0 mi mette a 0 tutto
# se il chord di partenza è diverso da quello di arrivo avrà probabilità che cambia a seconda del label
a = np.empty((12, 12, n_chords_and_no_chord, n_chords_and_no_chord))
a[:] = np.NAN
a[1, 0, :, :] = 0.684189684719655
a[1, 1, :, :] = 0.158682988716859
a[2, 0, :, :] = 0.551905308091156
a[2, 1, :, :] = 0
a[2, 2, :, :] = 0.0327184489628603
a[3, 0, :, :] = 0.741551387544580
a[3, 1, :, :] = 0.0223820305492633
a[3, 2, :, :] = 0.216058967539676
a[3, 3, :, :] = 0.0433649453617753
a[11, :, :, :] = 0
a[11, 0, :, :] = 0.854166666666667
a[11, 3, :, :] = 0.0208333333333333
a[11, 6, :, :] = 0.375000000000000
for i in range(0, n_chords):
a[:, :, i, i] = 0
return a
def Labels_To_Prevchord_Nextchord():
# dobbiao modificarla in modo che l'output sia una matrice di num_labels* chord * chord
# se il chord di partenza è uguale a quello di arrivo mettiamo la probabilità = 0?
# quando moltiplico per la probabilità data dalla chiave se è uguale a 0 mi mette a 0 tutto
# se il chord di partenza è diverso da quello di arrivo avrà probabilità che cambia a seconda del label
a = np.empty((12, 12))
a[:] = np.NAN
a[1, 0] = 0.684189684719655
a[1, 1] = 0.158682988716859
a[2, 0] = 0.551905308091156
a[2, 1] = 0
a[2, 2] = 0.0327184489628603
a[3, 0] = 0.741551387544580
a[3, 1] = 0.0223820305492633
a[3, 2] = 0.216058967539676
a[3, 3] = 0.0433649453617753
a[11, :] = 0
a[11, 0] = 0.854166666666667
a[11, 3] = 0.0208333333333333
a[11, 6] = 0.375000000000000
return a
def Bass_To_Bass_Chromagram():
bass_size = n_roots
bass_c_size = n_roots
notes = np.identity(bass_size)
mu = np.zeros((bass_size, bass_c_size), dtype=float)
sigma = np.zeros((bass_size, bass_c_size, bass_c_size))
for bass_index in range(0, bass_size):
a = np.transpose(notes[bass_index, :])
mu[bass_index, :] = np.array(a)
sigma[bass_index, :, :] = 0.1 * np.identity(bass_c_size)
return mu, sigma
def Chord_To_ChordSalience():
chord_salience_size = n_chords_and_no_chord
mu = np.identity(chord_salience_size, dtype='float')
sigma = np.zeros((n_chords_and_no_chord, chord_salience_size, chord_salience_size), dtype='float')
for i in range(0, n_chords_and_no_chord):
sigma[i, :, :] = np.identity(chord_salience_size, dtype='float')*0.2
return [mu, sigma]
def Tot_To_Chord(max_label):
tot_to_chord = np.zeros([max_label, n_keys, n_chords_and_no_chord, n_chords_and_no_chord])
key_to_chord = Key_To_Chord()
label_to_chord = Labels_To_Prevchord_Nextchord()[max_label - 1, :, :, :]
for l in range(0, max_label):
for c_next in range(0, n_chords_and_no_chord):
for c_prev in range(0, n_chords_and_no_chord):
for k in range(0, n_keys):
if c_prev == c_next: # we use label to transition probability only if the chords are different
tot_to_chord[l, k, c_prev, c_next] = key_to_chord[k, c_next]
else:
tot_to_chord[l, k, c_prev, c_next] = key_to_chord[k, c_next] * label_to_chord[l, c_prev, c_next]
for l in range(0, max_label):
for k in range(0, n_keys):
for c in range(0, n_chords_and_no_chord):
if sum(tot_to_chord[l, k, c, :]) != 0:
tot_to_chord[l, k, c, :] = tot_to_chord[l, k, c, :] / sum(tot_to_chord[l, k, c, :])
else: # if the sum is 0
tot_to_chord[l, k, c, :] = 1 / n_chords_and_no_chord
return tot_to_chord
def Tot_To_Chord_MOD(max_label):
key_to_chord = Key_To_Chord()
label_to_chord = Labels_To_Prevchord_Nextchord()[max_label - 1]
type_from_chord = np.concatenate((np.ones(n_roots), 2*np.ones(n_roots)))
tot_to_chord = np.zeros([n_chords_and_no_chord, max_label, n_keys, n_chords_and_no_chord])
for this_chord in range(1, n_chords_and_no_chord+1):
for key in range(1, n_keys+1):
for label in range(1, max_label+1):
for prev_chord in range(1, n_chords_and_no_chord+1):
key_root = (key - 1) % n_roots + 1
prev_chord_root = (prev_chord - 1) % n_roots + 1
this_chord_root = (this_chord - 1)% n_roots + 1
if prev_chord == n_chords_and_no_chord:
prev_chord_to_key = n_chords_and_no_chord
else:
prev_chord_type = type_from_chord[prev_chord - 1 ]
prev_chord_to_key = (prev_chord_root - key_root) % n_roots + 1 + (prev_chord_type - 1) * n_roots
if this_chord == n_chords_and_no_chord:
this_chord_to_key = n_chords_and_no_chord
else:
this_chord_type = type_from_chord[this_chord - 1]
this_chord_to_key = (this_chord_root - key_root) % n_roots + 1 + (this_chord_type - 1) * n_roots
tot_to_chord[prev_chord - 1, label - 1, key - 1, this_chord - 1] = key_to_chord[key - 1, this_chord - 1]
if prev_chord == this_chord:
tot_to_chord[prev_chord - 1, label - 1, key - 1, this_chord - 1] = tot_to_chord[prev_chord - 1, label - 1, key - 1, this_chord - 1] * (1 - label_to_chord[label - 1])
else:
tot_to_chord[prev_chord - 1, label - 1, key - 1, this_chord - 1] = tot_to_chord[prev_chord - 1, label - 1, key - 1, this_chord - 1] * (label_to_chord[label - 1])/(n_chords_and_no_chord - 1)
for l in range(0, max_label):
for k in range(0, n_keys):
for c in range(0, n_chords_and_no_chord):
tot_to_chord[c, l, k, :] = tot_to_chord[c, l, k, :] / sum(tot_to_chord[c, l, k, :])
return tot_to_chord
#if __name__=='__main__':
# path = "testcorto.wav"
# data, rate = librosa.load(path)
# [step, chroma] = get_features.get_chromagram(data, rate)
# matrix = sio.loadmat('MATLAB matrici/ChChangeGivenMode.mat')
# m = matrix['ChCh']
#
#
#print(Mode_To_Prevchord_Nextchord()[mix_key_index, :, :] - m[:, :, 1])