Python auto-instrumentation library for DSPy.
These traces are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix
.
pip install openinference-instrumentation-dspy
This quickstart shows you how to instrument your DSPy application. It is adapted from the DSPy quickstart.
Install required packages.
pip install openinference-instrumentation-dspy dspy-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp
Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006
. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)
python -m phoenix.server.main serve
Set up DSPyInstrumentor
to trace your DSPy application and sends the traces to Phoenix at the endpoint defined below.
from openinference.instrumentation.dspy import DSPyInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
DSPyInstrumentor().instrument()
Import dspy
and configure your language model.
import dspy
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
dspy.settings.configure(lm=turbo)
gms8k = GSM8K()
gsm8k_trainset, gsm8k_devset = gms8k.train[:10], gms8k.dev[:10]
Define a custom program that utilizes the ChainOfThought
module to perform step-by-step reasoning to generate answers.
class CoT(dspy.Module):
def __init__(self):
super().__init__()
self.prog = dspy.ChainOfThought("question -> answer")
def forward(self, question):
return self.prog(question=question)
Optimize your program using the BootstrapFewShotWithRandomSearch
teleprompter.
from dspy.teleprompt import BootstrapFewShot
config = dict(max_bootstrapped_demos=4, max_labeled_demos=4)
teleprompter = BootstrapFewShot(metric=gsm8k_metric, **config)
optimized_cot = teleprompter.compile(CoT(), trainset=gsm8k_trainset, valset=gsm8k_devset)
Evaluate performance on the dev dataset.
from dspy.evaluate import Evaluate
evaluate = Evaluate(devset=gsm8k_devset, metric=gsm8k_metric, num_threads=4, display_progress=True, display_table=0)
evaluate(optimized_cot)
Visit the Phoenix app at http://localhost:6006
to see your traces.
More details about tracing with OpenInference and Phoenix can be found in the Phoenix docs.
For AI/ML observability solutions in production, including a cloud-based trace collector, visit Arize.