-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
244 lines (204 loc) · 7.75 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Implementation of the plotting step of the analysis
#
# The plotting combines the histograms to plots which allow us to study the
# inital dataset based on observables motivated through physics.
import argparse
import ROOT
ROOT.gROOT.SetBatch(True)
# Declare a human-readable label for each variable
labels = {
"pt_1": "Muon p_{T} / GeV",
"pt_2": "Tau p_{T} / GeV",
"eta_1": "Muon #eta",
"eta_2": "Tau #eta",
"phi_1": "Muon #phi",
"phi_2": "Tau #phi",
"pt_met": "Missing p_{T} / GeV",
"phi_met": "Missing p_{T} (#phi)",
"q_1": "Muon charge",
"q_2": "Tau charge",
"iso_1": "Muon isolation",
"iso_2": "Tau isolation",
"m_1": "Muon mass / GeV",
"m_2": "Tau mass / GeV",
"mt_1": "Muon transverse mass / GeV",
"mt_2": "Tau transverse mass / GeV",
"dm_2": "Tau decay mode",
"m_vis": "Visible di-tau mass / GeV",
"pt_vis": "Visible di-tau p_{T} / GeV",
"mjj": "Di-jet mass / GeV",
"ptjj": "Di-jet p_{T} / GeV",
"jdeta": "Di-jet #Delta#eta",
"jpt_1": "Leading jet p_{T} / GeV",
"jpt_2": "Trailing jet p_{T} / GeV",
"jeta_1": "Leading jet #eta",
"jeta_2": "Trailing jet #eta",
"jphi_1": "Leading jet #phi",
"jphi_2": "Trailing jet #phi",
"jm_1": "Leading jet mass / GeV",
"jm_2": "Trailing jet mass / GeV",
"jbtag_1": "Leading jet b-tag / GeV",
"jbtag_2": "Trailing jet b-tag / GeV",
"npv": "Number of primary vertices",
"njets": "Number of jets",
}
# Specify the color for each process
colors = {
"ggH": ROOT.TColor.GetColor("#BF2229"),
"qqH": ROOT.TColor.GetColor("#00A88F"),
"TT": ROOT.TColor.GetColor(155, 152, 204),
"W": ROOT.TColor.GetColor(222, 90, 106),
"QCD": ROOT.TColor.GetColor(250, 202, 255),
"ZLL": ROOT.TColor.GetColor(100, 192, 232),
"ZTT": ROOT.TColor.GetColor(248, 206, 104),
}
# Retrieve a histogram from the input file based on the process and the variable
# name
def getHistogram(tfile, name, variable, tag=""):
name = "{}_{}{}".format(name, variable, tag)
h = tfile.Get(name)
if not h:
raise Exception("Failed to load histogram {}.".format(name))
return h
# Main function of the plotting step
#
# The major part of the code below is dedicated to define a nice-looking layout.
# The interesting part is the combination of the histograms to the QCD estimation.
# There, we take the data histogram from the control region and subtract all known
# processes defined in simulation and define the remaining part as QCD. Then,
# this shape is extrapolated into the signal region with a scale factor.
def main(path, output, variable, scale):
tfile = ROOT.TFile(path, "READ")
# Styles
ROOT.gStyle.SetOptStat(0)
ROOT.gStyle.SetCanvasBorderMode(0)
ROOT.gStyle.SetCanvasColor(ROOT.kWhite)
ROOT.gStyle.SetCanvasDefH(600)
ROOT.gStyle.SetCanvasDefW(600)
ROOT.gStyle.SetCanvasDefX(0)
ROOT.gStyle.SetCanvasDefY(0)
ROOT.gStyle.SetPadTopMargin(0.08)
ROOT.gStyle.SetPadBottomMargin(0.13)
ROOT.gStyle.SetPadLeftMargin(0.16)
ROOT.gStyle.SetPadRightMargin(0.05)
ROOT.gStyle.SetHistLineColor(1)
ROOT.gStyle.SetHistLineStyle(0)
ROOT.gStyle.SetHistLineWidth(1)
ROOT.gStyle.SetEndErrorSize(2)
ROOT.gStyle.SetMarkerStyle(20)
ROOT.gStyle.SetOptTitle(0)
ROOT.gStyle.SetTitleFont(42)
ROOT.gStyle.SetTitleColor(1)
ROOT.gStyle.SetTitleTextColor(1)
ROOT.gStyle.SetTitleFillColor(10)
ROOT.gStyle.SetTitleFontSize(0.05)
ROOT.gStyle.SetTitleColor(1, "XYZ")
ROOT.gStyle.SetTitleFont(42, "XYZ")
ROOT.gStyle.SetTitleSize(0.05, "XYZ")
ROOT.gStyle.SetTitleXOffset(1.00)
ROOT.gStyle.SetTitleYOffset(1.60)
ROOT.gStyle.SetLabelColor(1, "XYZ")
ROOT.gStyle.SetLabelFont(42, "XYZ")
ROOT.gStyle.SetLabelOffset(0.007, "XYZ")
ROOT.gStyle.SetLabelSize(0.04, "XYZ")
ROOT.gStyle.SetAxisColor(1, "XYZ")
ROOT.gStyle.SetStripDecimals(True)
ROOT.gStyle.SetTickLength(0.03, "XYZ")
ROOT.gStyle.SetNdivisions(510, "XYZ")
ROOT.gStyle.SetPadTickX(1)
ROOT.gStyle.SetPadTickY(1)
ROOT.gStyle.SetPaperSize(20., 20.)
ROOT.gStyle.SetHatchesLineWidth(5)
ROOT.gStyle.SetHatchesSpacing(0.05)
ROOT.TGaxis.SetExponentOffset(-0.08, 0.01, "Y")
# Simulation
ggH = getHistogram(tfile, "ggH", variable)
qqH = getHistogram(tfile, "qqH", variable)
W = getHistogram(tfile, "W1J", variable)
W2J = getHistogram(tfile, "W2J", variable)
W3J = getHistogram(tfile, "W3J", variable)
W.Add(W2J)
W.Add(W3J)
TT = getHistogram(tfile, "TT", variable)
ZLL = getHistogram(tfile, "ZLL", variable)
ZTT = getHistogram(tfile, "ZTT", variable)
# Data
data = getHistogram(tfile, "dataRunB", variable)
dataRunC = getHistogram(tfile, "dataRunC", variable)
data.Add(dataRunC)
# Data-driven QCD estimation
QCD = getHistogram(tfile, "dataRunB", variable, "_cr")
QCDRunC = getHistogram(tfile, "dataRunC", variable, "_cr")
QCD.Add(QCDRunC)
for name in ["W1J", "W2J", "W3J", "TT", "ZLL", "ZTT"]:
ss = getHistogram(tfile, name, variable, "_cr")
QCD.Add(ss, -1.0)
for i in range(1, QCD.GetNbinsX() + 1):
if QCD.GetBinContent(i) < 0.0:
QCD.SetBinContent(i, 0.0)
QCDScaleFactor = 0.80
QCD.Scale(QCDScaleFactor)
# Draw histograms
data.SetMarkerStyle(20)
data.SetLineColor(ROOT.kBlack)
ggH.SetLineColor(colors["ggH"])
qqH.SetLineColor(colors["qqH"])
scale_ggH = 10.0
ggH.Scale(scale_ggH)
scale_qqH = 100.0
qqH.Scale(scale_qqH)
for x in [ggH, qqH]:
x.SetLineWidth(3)
for x, l in [(QCD, "QCD"), (TT, "TT"), (ZLL, "ZLL"), (ZTT, "ZTT"), (W, "W")]:
x.SetLineWidth(0)
x.SetFillColor(colors[l])
stack = ROOT.THStack("", "")
for x in [QCD, TT, W, ZLL, ZTT]:
stack.Add(x)
c = ROOT.TCanvas("", "", 600, 600)
stack.Draw("hist")
name = data.GetTitle()
if name in labels:
title = labels[name]
else:
title = name
stack.GetXaxis().SetTitle(title)
stack.GetYaxis().SetTitle("N_{Events}")
stack.SetMaximum(max(stack.GetMaximum(), data.GetMaximum()) * 1.4)
stack.SetMinimum(1.0)
ggH.Draw("HIST SAME")
qqH.Draw("HIST SAME")
data.Draw("E1P SAME")
# Add legend
legend = ROOT.TLegend(0.4, 0.73, 0.90, 0.88)
legend.SetNColumns(2)
legend.AddEntry(ZTT, "Z#rightarrow#tau#tau", "f")
legend.AddEntry(ZLL, "Z#rightarrowll", "f")
legend.AddEntry(W, "W+jets", "f")
legend.AddEntry(TT, "t#bar{t}", "f")
legend.AddEntry(QCD, "QCD multijet", "f")
legend.AddEntry(ggH, "gg#rightarrowH (x{:.0f})".format(scale_ggH), "l")
legend.AddEntry(qqH, "qq#rightarrowH (x{:.0f})".format(scale_qqH), "l")
legend.AddEntry(data, "Data", "lep")
legend.SetBorderSize(0)
legend.Draw()
# Add title
latex = ROOT.TLatex()
latex.SetNDC()
latex.SetTextSize(0.04)
latex.SetTextFont(42)
lumi = 11.467
latex.DrawLatex(0.6, 0.935, "{:.1f} fb^{{-1}} (2012, 8 TeV)".format(lumi * scale))
latex.DrawLatex(0.16, 0.935, "#bf{CMS Open Data}")
# Save
c.SaveAs("{}/{}.pdf".format(output, variable))
c.SaveAs("{}/{}.png".format(output, variable))
# Loop over all variable names and make a plot for each
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("path", type=str, help="Full path to ROOT file with all histograms")
parser.add_argument("output", type=str, help="Output directory for plots")
parser.add_argument("scale", type=float, help="Scaling of the integrated luminosity")
args = parser.parse_args()
for variable in labels.keys():
main(args.path, args.output, variable, args.scale)