Skip to content

Latest commit

 

History

History
1355 lines (966 loc) · 67.3 KB

UserGuide.md

File metadata and controls

1355 lines (966 loc) · 67.3 KB

Table of Contents

  1. Overview
    1. General architecture
    2. Supported scanners and file formats
      1. MRI
      2. PET
  2. Where to find further information
  3. General notes of usage
  4. Framework basic functionality
    1. General conventions
      1. Object-oriented paradigm
      2. Error handling
      3. Naming conventions
      4. Units and index ordering
      5. Handles
    2. Library components
      1. Getting help on SIRF library modules
      2. General structure of the classes
      3. Basic classes
      4. Other classes
      5. Functions
  5. Compatibility with CCPi CIL
  6. Appendix
    1. Acquisition data storage scheme management
    2. Programming chains of Gadgetron gadgets
      1. Creating and running gadget chains by SIRF script
      2. SIRF gadget library
    3. Using the C++ libraries

Overview

The SIRF (Synergistic Image Reconstruction Framework) software is an Open Source toolkit for the reconstruction of PET and MRI raw data. The aim is to provide code simple enough to easily perform a reconstruction, yet powerful enough to be able to handle real, full-size datasets. Our strategy in achieving this aim is to employ available Open Source reconstruction software written in advanced programming languages such as C++ and provide basic-user-friendly interfaces to it written in script languages, primarily Matlab and Python. The interface style permits a reconstruction to be performed in stages, allowing the user to inspect or modify data, or insert their own code.

This User’s Guide describes version 3.6 of SIRF. The software can be found on https://github.com/SyneRBI.

General architecture

The code builds upon existing Open Source software packages for medical image reconstruction. At the outset, these packages are STIR for PET reconstruction, Gadgetron for MRI and NiftyReg for registration/resampling. SIRF provides MATLAB and Python interfaces to these underlying reconstruction engines. This is done by wrapping the engines in a C++ layer, and then placing a C-interface between the wrapped C++ engines and the MATLAB and Python interfaces.

At present, you should only use the C++, MATLAB and Python interfaces. The underlying C library is internal and likely to change over the next few releases.

Supported scanners and file formats

MRI

SIRF expects raw MR data in the ISMRMRD format. We use siemens_to_ismrmrd for this. This enables raw data from Siemens mMR Biograph PET-MR scanners to be converted to ISMRMRD format. For more details of how to export the raw MR data from Siemens PET-MR scanners and how to convert the data to ISMRMRD please see the wiki: https://github.com/SyneRBI/SIRF/wiki/MR-raw-data.

Converters for data from other scanners are available from https://github.com/ismrmrd but we have not tried these yet.

SIRF currently supports sequences that use 2D and 3D cartesian sampling. If the Gadgetron toolboxes were found during building, it supports radial, golden-angle radial and radial-phase-encoding trajectories.

PET

STIR can handle data from the Siemens mMR Biograph with progress being made for the GE Signa PET/MR.

Where to find further information

General notes of usage

Please note that with the installation set-up, you will normally have two copies of the Matlab/Python module files: the original ones in the SIRF clone and the installed ones. This only matters if you want to debug or modify the files. The installation instructions point Python and Matlab to the “installed” files.

The MR module and the demos create temporary files during operation. They are normally created in the same folder as the input data, but are cleaned up afterwards. Therefore, the data cannot reside in a read-only folder.

Framework basic functionality

This section mostly describes the Python/MATLAB interface of SIRF, although a lot of the text applies to the underlying C++ library as well. See the appendix on using SIRF C++ for additional information if you use C++.

General conventions

Object-oriented paradigm

SIRF Python/MATLAB modules are interfaces to object-oriented C++, which makes it reasonable for them to follow the object-oriented programming paradigm as well. This means that instead of having data containers (arrays, files etc.) and functions that operate on them, we employ objects, which contain data and come with sets of functions, called their methods, that operate on data. Each object contains a special method called constructor, which has the same name as the object class name and must be called to create that object. For example, to create an object of class ImageData that handles MR image data and fill it with data stored in the HDF5 file 'my_image.h5' one needs to do assignment

image = ImageData('my_image.h5'); 

We note that an ImageData object contains not only the voxel values, but also a number of parameters specified by the file format, such as geometric info, but also extra information in the ISMRMRD header in the MR example above. The object data is encapsulated, i.e. is not directly accessible from the user's code (being handled mostly by the underpinning C++ code) and is processed by the object methods. For example, to display the data encapsulated by image, one needs to call its method show():

image.show(); 

and to copy the data into a Python/Matlab array one uses method as_array():

image_data_array = image.as_array(); 

Parameters of objects are modified/accessed via set/get methods (mutators and accessors). For example, the value of an objective function handled by object named obj_fun on an image data object image is computed by its method get_value() as

obj_fun_value = obj_fun.get_value(image); 

The mutators are also responsible for basic error checking.

Some classes are derived from other classes, which means that they have (inherit) all the methods of the classes they are derived from. If class B derives from class A, then A is called its base class. For example, class AcquisitionModelUsingRayTracingMatrix is derived from AcquisitionModelUsingMatrix, which in turn is derived from AcquisitionModel, and so it inherits all the methods of the latter two base classes.

Error handling

Error handling is via exceptions, i.e. functions do not return an error status, but throw an error if something did not work. The user can catch these exceptions if required as illustrated in the demos.

Naming conventions

  • Types/classes start with capitals, every word is capitalised, no underscores, e.g. AcquisitionModel.

  • Class methods are lower case, underscores between different words, e.g. get_voxel_size().

  • Methods indicating

    • a number of things start with num, e.g. num_gates.

    • the number of an item in a sequence end with num, e.g. gate_num.

Units and index ordering

Distances are expressed in mm.

For arrays in the target language, we use “native” ordering of indices in Python and Matlab. These are unfortunately opposite, so we would write

image_array[z,y,x] # Python 

image_array(x,y,z) % Matlab 

For images, the meaning of x, y and z is currently acquisition dependent. You cannot rely that this order is related to the patient orientation in a fixed manner. Use the methods for getting geometrical information to know how these indices are related to LPS coordinates.

Handles

In both Matlab and Python, SIRF operates with handles to objects, which affects the meaning of the assignment x = y: instead of creating a separate copy of y stored in x, x simply points to the same underlying data. As the result, any changes in x simultaneously change y.

In order to have a true (i.e. independent) copy of a SIRF object, the user must call the object methods that create copies of them (see below).

Library components

At present, the SIRF library provides Python package sirf containing modules sirf.STIR and sirf.Gadgetron implementing Python interfaces to STIR and Gadgetron respectively and module sirf.SIRF containing base classes specifying functionality that is common to all reconstruction engines. Respective Matlab interface package and modules have the same names.

Getting help on SIRF library modules

We remind that to see the contents of a Python module, the user needs to import it and use Python's help, and in Matlab one needs to use doc. For example,

# Python  
import sirf.STIR 
help(sirf.STIR) 

will show the components of the module sirf.STIR, and similarly

% Matlab 
doc sirf.Gadgetron 

will show the components of sirf.Gadgetron. In the same way,

# Python  
help(sirf.Gadgetron.ImageData) 

will provide information on the class ImageData defined in the module sirf.Gadgetron, and

% Matlab 
doc sirf.STIR.AcquisitionData  

on the sirf.STIR.AcquisitionData class. Regrettably, help and doc show all methods, including some common built-in methods such as __weakref__ method in Python or addlistener method in Matlab. Methods that are not related to SIRF is relatively easy to identify in Python (built-in methods have underscores in names). In Matlab they are difficult to identify, which is why we mark relevant Matlab methods other than constructors with ***SIRF***. Methods not marked this way should be ignored.

In order to understand the functionality of a derived class (see Object-oriented paradigm), you are advised to first get help on the classes it is derived from. In Python, you can see that a class is derived by the presence of "Method resolution order" section in Python help output, which lists all classes it is derived from. You are advised to get help on all these classes except Python's class builtins.object. In Matlab, look at "Superclasses" item in "Class Details", and get help on the classes listed there except Matlab's class handle.

General structure of the classes

Most classes have a constructor to create an object from a file

image_data = ImageData(filename) 

and a method to create a copy of the object

a_copy = image_data.clone() 

“Processing” classes normally use the following pattern

recon.set_input(acquisition_data); 
recon.set_up(image_data); 
recon.process(); 
output_image_data=recon.get_output(); 

Classes follow a simple hierarchy, where top-level describes the generic functionality, and derived classes add/specify functionality. To see an example, look up Reconstructor and IterativeReconstructor classes in sirf.STIR or sirf.STIR using help or doc. We note that help(sirf.STIR.IterativeReconstructor) and doc sirf.STIR.IterativeReconstructor will show all the functionality of this class, i.e. including that of Reconstructor (and also some built-in functionality common to Python/Matlab classes).

In the rest of the document we give basic information on the SIRF classes, including brief descriptions of the methods that are of interest to the user. Please use the inline help facility discussed above for more information. Descriptions are given for Python modules, which usually contain more functionality.

Basic classes

Data Containers

Reconstructed data are represented by ImageData objects. Currently they represent 3D volumes discretised using voxels.

Measured data (either raw or after some pre-processing) are represented by AcquisitionData objects. These contain everything what is needed to be able to reconstruct the data (including scanner information and geometry).

Both classes of data objects inherit from a base class DataContainer defined in module sirf.SIRF.

DataContainer

A base class for data containers.

Methods:
clone      Returns a copy of this object.
write      Writes the object data to a file.
norm       Returns 2-norm of the object data viewed as a vector.
dot        Returns the dot product of the container data with another 
           container data viewed as vectors.
multiply   Returns the element-wise product of this and another container 
           data viewed as vectors.
divide     Returns the element-wise product of this and another container 
           data viewed as vectors.

The element-wise addition, subtraction, multiplication and division can be performed using overloaded +, -, * and /. Either of the operands of * and the second operand of / can be a scalar.

ImageData (base class)

A base class, from which engine-specific image data classes are derived.

Methods:
read                  Reads the image data from a file.
fill                  Fills the image with data from another image.
get_geometrical info  Returns an object containing information describing the
                      geometry of the image (sizes, orientation etc.)
reorient              Chenges the orientation of the image

This class also defines operations == and != on ImageData objects.

In what follows, we mark by PET classes defined in sirf.STIR only and by MR those defined in sirf.Gadgetron only, and we use the same marking for methods of classes defined in both interface modules.

We remind that every derived class inherits all methods of its base class.

AcquisitionData

An engine-specific acquisition data container class for acquisition data objects. Inherits from sirf.SIRF.DataContainer.

Methods:
AcquisitionData     Constructor. If no arguments are present, creates an
                    empty object, otherwise:
                    PET: Specifies the file containing raw data or
                    creates new AcquisitionData based on scanner information 
                    that comes either from a template AcquisitionData object
                    or discerned from the scanner name and parameters given
                    in the arguments; 
                    MR: Specifies the file containing raw data. 
set_storage_scheme  Specifies whether the intermediate data should be kept in 
                    files or in RAM (see Acquisition data storage scheme 
                    management in Appendix).
get_storage_scheme  Returns currently used storage scheme. 
create_uniform_image  
              (PET) Returns new compatible ImageData object. 
as_array            Returns the object data as an array. 
fill                Replaces the object data with user-supplied data. 
sort           (MR) Sorts the acquisition data. 
is_sorted      (MR) Returns true if and only if the acquisition data is sorted. 
get_info      (PET) Returns information on the acquisition data as a string. 
get_ISMRMRD_info
               (MR) Returns information on the acquisition data as an array.
process        (MR) Processes the acquisition data by a chain of gadgets. 
dimensions    (PET) Returns the acquisition data dimensions
show                Displays the acquisition data as a set of 2D sinograms (PET)
                    or xy-slices (MR)
ImageData

An engine-specific image data container class for data representing 3D objects. Inherits from sirf.SIRF.ImageData.

Methods:
ImageData           Constructor. Reads data from a file or creates empty object. 
initialise   (PET)  Sets the image size in voxels, voxel sizes and the origin. 
fill                Replaces the object data with user-supplied data. 
as_array            Returns the object data as an array. 
read_from_file      Reads the image data from file.
get_ISMRMRD_info
              (MR)  Returns information on the image data as an array.
get_uniform_copy   
             (PET)  Returns a copy of this image filled with a constant value. 
add_shape    (PET)  Adds a shape to the image. 
show                Displays the image as a set of 2D xy-slices. 
dimensions   (PET)  Returns the object data dimensions
voxel_sizes  (PET)  Returns the voxel sizes
CoilSensitivityData (MR)

Class for storing coil sensitivity maps.

Methods:
CoilSensitivityData  Constructor. Creates empty object.
calculate            Calculates coil sensitivities from the acquisition data 
                     Specified by the argument. 
csm_as_array         Returns the coil sensitivity map for the slice/repetition 
                     specified by the argument as an array. 	
Examples:
PET_image = ImageData('image.hv'); % read image data from a file 
PET_image0 = ImageData(); % create empty image object 
PET_image0.initialise([128,128,31], [3,3,3.375]); % in Python: (128,128,31) etc. 
PET_image0.fill(1.0); % assign value 1.0 at each voxel 
PET_image_array = PET_image.as_array(); % copy image data to a Matlab array 

MR_image_array = MR_image.as_array(); % copy image data to a Matlab array 
MR_acquisition_data = AcquisitionData('mr_raw_data.h5'); 
cs_data = CoilSensitivityData(); % create empty object 
cs_data.calculate(MR_acquisition_data); % calculate coil sensitivities 
csm0 = cs_data.csm_as_array(0); % obtain coil sensitivities for slice 0 as array 

Data Processors

ImageDataProcessor

Class for objects that process ImageData objects.

Methods:
ImageDataProcessor  Constructor. Creates new ImageDataProcessor object 
                    (PET: empty, MR: defined by the argument). 
set_input           Sets the processor input. 
process             Computes processed image data, leaving the input intact. 
get_output          Returns the processed image data. 
apply         (PET) Processes the ImageData argument.
TruncateToCylinderProcessor (PET)

Class for the image processor that zeroes the image outside a cylinder. Inherits the methods of ImageDataProcessor.

Methods:
set_strictly_less_than_radius  Defines the behaviour on the cylinder boundary.
get_strictly_less_than_radius  Exposes the behaviour on the cylinder boundary.
SeparableGaussianImageFilter (PET)

Class for the image processor that implements Gaussian filtering. Inherits the methods of ImageDataProcessor.

The filtering operation is performed as 3 separate one-dimensional filters in each spacial direction.

Methods (in addition to those of ImageDataProcessor):
set_fwhms            Sets Full Widths at Half Maximum in mm in each spacial direction
set_max_kernel_sizes Sets max kernel size in voxels in each spacial direction.
set_normalise        Normalise the kernel to 1 or not (default is on)
AcquisitionDataProcessor (MR)

Class for objects that process AcquisitionData objects.

Methods:
AcquisitionDataProcessor  
                Constructor. Creates new processor object (a chain of gadgets,
                see section Programming chains of Gadgetron gadgets) defined by 
                the argument. 
set_input       Sets the processor input. 
process         Processes the image data on input. 
get_output      Retrieves the processed image data. 
Examples:
filter = TruncateToCylinderProcessor(); 
filter.apply(PET_image); 
img_proc = ImageDataProcessor({'ExtractGadget'}); % Python: ['ExtractGadget'] 
img_proc.set_input(MR_image);  
img_proc.process();  
MR_image_magnitude = img_proc.get_output(); 
acq_proc.set_input(MR_acquired_data);  
acq_proc.process();  
preprocessed_data = acq_proc.get_output(); 

Reconstructors

Reconstructor

A base class for a generic image reconstructor.

Methods:
set_input           Sets the input (AquisitionData object). 
process             Runs the reconstruction. 
get_output          Returns the output (ImageData object). 
set_output_filename_prefix  
             (PET)  Specifies the naming for the output files.  
FBP2DReconstructor (PET)

Class for 2D Filtered Back Projection reconstructor.

This is an implementation of the 2D FBP algorithm. Oblique angles in data will be ignored. The exception is the span=1 case, where the ring differences +1 and -1 are first combined to give indirect sinograms. By default, the algorithm uses the ramp filter. An apodizing filter can be added by using set_alpha_cosine_window and/or set_frequency_cut_off. The apodizing filter in frequency space has the form

(alpha + (1 - alpha) * cos(pi * f / fc))
Methods:
set_input                Sets the input (AquisitionData object).
set_zoom                 Allows to change voxel size.
set_alpha_cosine_window  Sets alpha.
set_frequency_cut_off    Sets fc.
set_output_image_size_xy Sets x and y sizes of output image.
set_up                   Sets up the reconstructor.
reconstruct              Performs reconstruction.
get_output               Returns the output (ImageData object). 
IterativeReconstructor (PET)

Class for PET reconstruction algorithms that use Ordered Subsets technique whereby the acquisition data is split into subsets, and the objective function and its gradient are represented as the sums of components corresponding to subsets. Typically, one iteration of such algorithm would deal with one subset, and is therefore referred to as sub-iteration. Inherits the methods of Reconstructor.

Methods:
set_num_subsets            Sets the number of subsets, 
get_num_subsets            Returns the number of subsets. 
set_num_subiterations      Sets the number of subiterations. 
get_num_subiterations      Returns the number of subiterations. 
get_subiterations_num      Returns the current subiteration number. 
set_save_interval          Specifies how often to save image estimates. 
set_objective_function     Specifies the objective function. 
set_up                     Prepares the reconstructor for use. 
set_current_estimate       Sets the current image estimate. 
get_current_estimate       Returns the current image estimate.  
update_current_estimate    Updates the current image estimate. 
set_current_subset_num     Specifies the current subset number. 
get_subset_sensitivity     Returns sensitivity image for the current subset. 
reconstruct                Reconstructs using the argument as initial image. 
process                    Reconstructs using current image estimate as initial. 
update                     Updates using the argument as current image estimate. 
OSMAPOSLReconstructor (PET)

Class for reconstructor objects using Ordered Subsets Maximum A Posteriori One Step Late reconstruction algorithm, see http://stir.sourceforge.net/documentation/doxy/html/classstir_1_1OSMAPOSLReconstruction.html. Inherits the methods of IterativeReconstructor.

Methods:
OSMAPOSLReconstructor  Constructor. Creates new OSMAPOSL reconstructor object.  
set_maximum_relative_change         The multiplicative update image will be thresholded from above
                                    with this value (at every subiteration except the first)
                                    i.e., before multiplying it with the old image to get the new
                                    one. The default value does not impose any thresholding (as in
                                    strict OSMAPOSL). However, we find that when subsets are used,
                                    a value of about 10 is beneficial.
set_minimum_relative_change         The multiplicative update image will be thresholded from below
                                    with this value (at every subiteration except the first).
KOSMAPOSLReconstructor (PET)

Class for reconstructor objects using Kernel Ordered Subsets Maximum A Posteriori One Step Late reconstruction algorithm.

This class implements the iterative algorithm obtained using the Kernel method (KEM) and Hybrid kernel method (HKEM).This implementation corresponds to the one presented by Deidda D. et al, "Hybrid PET-MR list-mode kernelized expectation maximization reconstruction", Inverse Problems, 2019, DOI: https://doi.org/10.1088/1361-6420/ab013f. However, this allows also sinogram-based reconstruction. Each voxel value of the image X can be represented as a linear combination using the kernel method. If we have an image with prior information, we can construct for each voxel j of the emission image a feature vector v using the prior information. The image X can then be described using the kernel matrix

X = A*K 

where K is the kernel matrix and A are the kernel coefficients. The resulting algorithm with OSEM, for example, is the following:

A^(n+1) =  A^n/(K^n * S) * K^n * P * Y/(P * K^n *A^n + S)

where kernel can be written as:

 K^n = K_m * K_p

with

K_m = exp(-(v_j - v_l)^2/(2*sigma_m^2)) * exp(-(x_j - x_l)^2 /(2*sigma_dm^2))

being the MR component of the kernel and

K_p = exp(-(z_j - z_l)^2/(2*sigma_p^2)) * exp(-(x_j - x_l)^2 /(2*sigma_dp^2))

is the part coming from the emission iterative update. Here, the Gaussian kernel functions have been modulated by the distance between voxels in the image space.

Methods:
KOSMAPOSLReconstructor    Constructor. Creates new KOSMAPOSL reconstructor object.
set_anatomical_prior      Sets anatomical prior.
set_num_neighbours        Sets number of neighbours.
set_num_non_zero_features Sets number of non-zero features.
set_sigma_m               Sets sigma_m.
set_sigma_p               Sets sigma_p.
set_sigma_dm              Sets sigma_dm.
set_sigma_dp              Sets sigma_dp.
set_only_2D               Use 2D kernels.
set_hybrid                Enable the hybrid kernel method (i.e. K_m*K_p) vs only the MR kernel.
OSSPSReconstructor (PET)

Class for reconstructor objects using Ordered Subsets Separable Paraboloidal Surrogate reconstruction algorithm, see http://stir.sourceforge.net/documentation/doxy/html/classstir_1_1OSSPSReconstruction.html. Inherits the methods of IterativeReconstructor.

Methods:
OSSPSReconstructor       Constructor. Creates new OSSPS reconstructor object.
set_relaxation_parameter Sets relaxation parameter.
set_relaxation_gamma Sets relaxation gamma parameter.
FullySampledReconstructor (MR)

Class for a reconstructor from fully sampled Cartesian raw data. Inherits the methods of Reconstructor.

Methods:
FullySampledReconstructor  Constructor. Creates new reconstructor object.  
CartesianGRAPPAReconstructor (MR)

Class for a reconstructor from undersampled Cartesian raw data. Inherits the methods of Reconstructor.

Methods:
CartesianGRAPPAReconstructor  Constructor. Creates new reconstructor object. 

Registration and resampling classes

SIRF is capable of performing rigid, affine and non-rigid registrations. Resampling functionality is also available. Initially, this has provided through the wrapping of NiftyReg (although future releases may incorporate other packages).

Below examples are given for rigid/affine and non-rigid registrations, as well as resampling. More complete examples for both Matlab and python can be found in the examples folder.

Rigid/affine registration (NiftyAladinSym)

Methods
set_parameter_file						Set the parameter file
set_parameter							Set a parameter
set_reference_image						Set the reference image
set_floating_image						Set the floating image
set_reference_mask						Set the mask of the reference image
set_floating_mask						Set the mask of the floating image
process									Start the registration process
get_output								Get the registered image
get_transformation_matrix_forward		Get the forward transformation matrix
get_transformation_matrix_inverse		Get the inverse transformation matrix
get_deformation_field_forward			Get the forward deformation field
get_deformation_field_inverse			Get the inverse deformation field
get_displacement_field_forward			Get the forward displacement field
get_displacement_field_inverse			Get the inverse displacement field
Example
reg = NiftyAladinSym()
reg.set_reference_image(ref)
reg.set_floating_image(flo)
reg.set_parameter_file(par_file)
reg.set_parameter('SetPerformRigid','1')
reg.set_parameter('SetPerformAffine','0')
reg.process()
output = reg.get_output()
Non-rigid registration (NiftyF3dSym)
Methods
set_parameter_file						Set the parameter file
set_parameter							Set a parameter
set_reference_image						Set the reference image
set_floating_image						Set the floating image
set_reference_mask						Set the mask of the reference image
set_floating_mask						Set the mask of the floating image
process									Start the registration process
get_output								Get the registered image
get_deformation_field_forward			Get the forward deformation field
get_deformation_field_inverse			Get the inverse deformation field
get_displacement_field_forward			Get the forward displacement field
get_displacement_field_inverse			Get the inverse displacement field
set_initial_affine_transformation		Set the initial affine transformation
Example
reg = NiftyF3dSym()
reg.set_reference_image(ref)
reg.set_floating_image(flo)
reg.set_parameter_file(par_file)
reg.set_parameter('SetPerformRigid','1')
reg.set_parameter('SetPerformAffine','0')
reg.process()
output = reg.get_output()
Resampling (NiftyResample)
Methods
set_reference_image		Set the reference image
set_floating_image		Set the floating
process					Start the resampling process. 
							This is the equivalent of 
							forward(floating_image).
get_output				Get the registered image
add_transformation		Add transformation (any type)
clear_transformations	Remove all transformations
set_interpolation_type	Set interpolation type
forward(im, out=None)	Resample image in forward direction.
							Image should have same properties as
							floating image used in set_up.
backward(im, out=None)	Resample image in backward/adjoint direction. 
							Image should have same properties as
							reference image used in set_up.
adjoint(im, out=None)	Alias of backward.
Example
res = NiftyResample()
res.set_reference_image(ref)
res.set_floating_image(flo)
res.set_interpolation_type(1)
res.add_transformation(trans1)
res.add_transformation(trans2)
out = res.forward(flo)
# No allocation, faster
res.forward(flo, out=out)
# Backwards/adjoint
out2 = res.adjoint(ref)

Other classes

ListmodeToSinograms (PET)

Class for converting raw data from listmode format into sinograms, i.e. histogrammed data in the format of PET AcquisitionData.

It has 2 main functions:

  • process() can be used to read prompts and/or delayed coincidences to produce a single PET AcquisitionData. Two variables decide what is done with 3 possible cases:
    • store_prompts=true, store_delayeds=false: only prompts are stored
    • store_prompts=false, store_delayeds=true: only delayeds are stored
    • store_prompts=true, store_delayeds=true: prompts-delayeds are stored Clearly, enabling the store_delayeds option only makes sense if the data was acquired accordingly.
  • estimate_randoms() can be used to get a relatively noiseless estimate of the random coincidences.
Methods:
ListmodeToSinograms  Constructor. Takes an optional text string argument with
                     the name of a STIR parameter file defining the conversion options.
                     If no argument is given, default settings apply except
                     for the names of input raw data file, template file and
                     output filename prefix, which must be set by the user by
                     calling respective methods.
set_input            Specifies the input raw data file.
set_output_prefix    Specifies the prefix for the output file(s), which will
                     be appended by `_g1f1d0b0.hs`.
set_template         Specifies the file containing acquisition data to be
                     used as a source of information about the scanner.
set_time_interval    Specifies the scanning time sub-interval (in seconds) to be converted
                     (an empty interval indicates that all raw data must be converted)
flag_on              Turns on (i.e. assigns value true to) a conversion flag.
flag_off             Turns off (i.e. assigns value false to) a conversion flag.
set_up               Sets up the converter.
process              Performs the conversion.
get_output           Returns AcquisitionData object containing converted data.
estimate_randoms     Estimates randoms. (Currently via a Maximum Likelihood estimate
                     of the singles, based on the delayed coincidences).
Examples:
lm2sino = ListmodeToSinograms()
lm2sino.set_input(list_file)
lm2sino.set_output_prefix(sino_file)
lm2sino.set_template(tmpl_file)
lm2sino.set_time_interval(0, 10)
lm2sino.flag_on('store_prompts')

lm2sino.set_up()
lm2sino.process()
acq_data = lm2sino.get_output()
randoms_acq_data = lm2sino.estimate_randoms()
AcquisitionModel

Class for the acquisition process modelling. Main component is the forward projection operation F that for a given image data x estimates the data y = F(x) to be acquired by the scanner (simulated acquisition data). The transpose B of the Frechet derivative of F is referred to as backprojection (if F is linear, e.g. a matrix, then B is the transpose of F).

For PET, F(x) is the right-hand side of the following equation:

(F_pet)    y = S(G P x + a) + b

where

P is ImageDataProcessor, allowing for instance smoothing the image first to model some resolution effects.

G is a ray tracing matrix, (conceptually) a matrix whose columns correspond to the image voxels and rows to pairs of scanner's detectors (bins), each column simulating the impact of this voxel's radiation on the data acquired by the bins (this matrix is never actually computed);

a and b are additive and background terms representing the effects of accidental coincidences and scattering;

S is acquisition sensitivity model representing detector sensitivities and attenuation.

Accordingly, the backprojection B is the right-hand side of

(B_pet)    x = P G' S y

where G' is the transpose of G. Warning at present, this assumes that the image data processor P is a linear operator and P' = P.

For MR, the forward projection is given by

(F_mr)    F(x) = U T S x

where S represents coil sensitivity maps, T represents the Fourier transform and U undersampling. If the image data x is represented by a vector of dimension n and the number of coils is m, then S is an mn by n block matrix composed by m diagonal blocks with coil sensitivity values at voxels on the diagonals. If the model uses 3D Fourier transform, then T is a block diagonal matrix with m identical blocks, and if 2D transforms are applied to xy slices, then the number of blocks is m times the number of slices. Finally, U is another block diagonal matrix with m identical diagonal blocks, in which a diagonal element is either 0 or 1 depending on whether corresponding voxel is on the readout. The backprojection is given by

(B_mr)    B(y) = S T' U y

where T' is the complex transpose of T, i.e. the inverse Fourier transform.

Methods:
AcquisitionModel          Constructor. Creates an acquisition model 
                          (PET: empty, MR: empty or based on the image and 
                          acquisition data templates specified by the 
                          arguments). 
forward                   Returns F(x) for the image data x specified 
                          by the argument. 
backward                  Returns B(y) for the acquisition data y specified 
                          by the argument. 
set_up                    Sets up the model based on acquisition and image data  
                          templates provided by the arguments. 
set_additive_term   (PET) Sets term a in (F). 
set_acquisition_sensitivity   
                    (PET) Defines AcquisitionSensitivityModel S (see below). 
set_image_data_processor
                    (PET) Defines the ImageDataProcessor P
set_coil_sensitivity_maps  
                     (MR) Sets coil sensitivity maps to be used.  
norm                      Returns the operator norm of F(x) (in PET case -
                          its linear part S G P)
Examples:
MR_model = AcquisitionModel(acq_template, image_template); 
MR_model.set_coil_sensitivity_maps(cs_data); 
sim_data = MR_model.forward(MR_image);
AcquisitionModelUsingRayTracingMatrix (PET)

Class for the PET acquisition process model that uses (implicitly) a sparse matrix for G in (F). This class inherits the methods of PET AcquisitionModel class, with forward projection defined by (F) and backprojection by (B).

Methods:
AcquisitionModelUsingRayTracingMatrix  
                      Constructor. Creates an acquisition model. 

set_num_tangential_LORs(int)
                      can be set to use more than 1 LOR (recommended)
Examples:
acq_model = AcquisitionModelUsingRayTracingMatrix();
acq_mode.set_num_tangential_LORs(10)
smoother = SeparableGaussianImageFilter()
smoother.set_fwhms((6,5,5))
acq_model.set_image_data_processor(smoother)
acq_model.set_up(acq_template, image_template) 
sim_data = acq_model.forward(image); 
AcquisitionModelUsingParallelproj (PET)

This class is only available if STIR is at least version 5 (or built from the master branch). It uses [Georg Schramm's parallel (computing) projector](https://github.com/gschramm/parallelproj proj). This uses Joseph interpolation, but importantly can use your GPU (if CUDA was found during building).

Methods:
AcquisitionModelUsingParallelproj
                  Constructor
Examples:
acq_model = AcquisitionModelUsingParallelproj()
acq_model.set_up(acq_template, image_template) 
sim_data = acq_model.forward(image); 

(Note that set_image_data_processor can also be used of course.)

AcquisitionSensitivityModel (PET)

Class for a part of AcquisitionModel that accounts for bin efficiencies and attenuation. Provides methods for for applying S factor in (F) and (B) or its inverse.

Methods:
AcquisitionSensitivityModel 
                 Constructor. Creates a new object of this class
                 - from an ECAT8 file or
                 - from an attenuation image (ImageData object) or
                 - from bin efficiencies (AcquisitionData object) or
                 - by chaining two objects of this class.
                 In the last case, the normalisation n is the product 
                 of the two objects' normalisations.

set_up           Sets up the object.
normalise        Applies the inverse of S to the AcquisitionData argument.
unnormalise      Applies S to the AcquisitionData argument.
forward          Returns the argument multiplied by S. The argument
                 is not changed.
invert           Returns the argument multiplied by the inverse of S. 
                 The argument is not changed.
Examples:
# obtain an acquisition data template
template = AcquisitionData(temp_file)

# create acquisition sensitivity model from ECAT8 normalization data
asm = AcquisitionSensitivityModel(norm_file)

# create acquisition sensitivity model from attenuation image
attn_image = ImageData(attn_file)
am = AcquisitionModelUsingRayTracingMatrix()
am.set_up(template, attn_image)
asm = AcquisitionSensitivityModel(attn_image, am)

# create acquisition sensitivity model from bin efficiencies
asm = AcquisitionSensitivityModel(bin_eff)
ObjectiveFunction (PET)

Class for objective functions maximized by iterative Ordered Subsets reconstruction algorithms. At present we use Poisson logarithmic likelihood function with linear model for mean and a specific arrangement of the acquisition data. To make our interface more user-friendly, we provide a convenience function make_PoissonLogLikelihood that creates objects of this class (instead of the usual constructor) based on the acquisition data to be used.

The user have an option of adding a penalty term (referred to as prior) to the objective function. At present, we have a limited number of priors implemented, see the next section.

Methods:
ObjectiveFunction  Constructor. Creates a new empty object.
set_prior          Specifies the prior. 
set_num_subsets    Specifies the number of subsets. 
set_up             Prepares this object for use. 
get_value          Returns the value of the objective function. 
get_gradient       Returns the gradient of the objective function. 
get_subset_gradient 
                   Returns the component of the gradient for the specified subset. 
get_backprojection_of_acquisition_ratio 
                   Returns the backprojection of the ratio of measured to estimated 
                   acquisition data. 
set_acquisition_model 
                   Specifies the acquisition model to be used. 
set_acquisition_data 
                   Specifies the acquisition data to be used.  
Prior (PET)

An abstract base class for a penalty term to be added to the objective function. The value $f$ (and sometimes the gradient $g_r$ for the $r^{th}$ voxel) for each prior is presented below.

Methods:
Prior                    Constructor. Creates a new empty object.
set_penalisation_factor  Specifies the prior's scaling factor. 
get_gradient             Returns the prior gradient.  
QuadraticPrior (PET)

Class for the prior that is a quadratic functions of the image values.

Implements a quadratic Gibbs prior: $$f = \frac{1}{4} \sum_{r,dr} w_{dr} (\lambda_r - \lambda_{r+dr})^2 * \kappa_r * \kappa_{r+dr}$$

The gradient of the prior is computed as follows: $$g_r = \sum_{dr} \frac{w_{dr}}{2} (\lambda_r - \lambda_{r+dr}) * \kappa_r * \kappa_{r+dr}$$

where $\lambda$ is the image and r and dr are indices and the sum is over the neighbourhood where the weights $w_{dr}$ are non-zero.

The $\kappa$ image can be used to have spatially-varying penalties such as in Jeff Fessler's papers. It should have identical dimensions to the image for which the penalty is computed. If $\kappa$ is not set, this class will effectively use 1 for all $\kappa$'s.

By default, a 3x3 or 3x3x3 neigbourhood is used where the weights are set to x-voxel_size divided by the Euclidean distance between the points.

LogcoshPrior (PET)

This implements a Logcosh prior that is given by: $$f = \sum_{r,dr} w_{dr} \frac{1}{2 s^2} log(cosh(s(\lambda_r - \lambda_{r+dr}))) * \kappa_r * \kappa_{r+dr}$$

The gradient of Logcosh prior is computed as follows: $$g_r = \sum_{dr} w_{dr} \frac{1}{s} \tanh (s (\lambda_r-\lambda_{r + dr}))* \kappa_r * \kappa_{r+dr}$$

where $\lambda$ is the image where the prior is computed and $r$ and $dr$ are indices and the sum is over the neighbourhood where the weights $w_{dr}$ are non-zero. $s$ (a.k.a. scalar) controls the transition between the quadratic (smooth) and linear (edge-preserving) nature of the prior

The $\kappa$ image is the spatially-varying penalties as before.

By default, a 3x3 or 3x3x3 neigbourhood is used where the weights are set to x-voxel_size divided by the Euclidean distance between the points.

RelativeDifferencePrior (PET)

This implements a Relative Difference Prior (RDP), proposed by J. Nuyts, et.al., 2002. RDP is given by: $$f= \sum_{r,dr} \frac{w_{dr}}{2} \frac{(\lambda_r - \lambda_{r+dr})^2}{(\lambda_r+ \lambda_{r+dr} + \gamma |\lambda_r - \lambda_{r+dr}| + \epsilon)} * \kappa_r * \kappa_{r+dr}$$

The gradient of the prior is computed as follows: $$g_r = \sum_{dr} w_{dr} \frac{(\lambda_r - \lambda_{r+dr}) (\gamma |\lambda_r - \lambda_{r+dr}|+ \lambda_r + 3\lambda_{r+dr} + 2 \epsilon)}{(\lambda_r+ \lambda_{r+dr} + \gamma |\lambda_r - \lambda_{r+dr}| + \epsilon)^2} * \kappa_r * \kappa_{r+dr}$$

where $\lambda$ is the image where the prior is computed and $r$ and $dr$ are indices and the sum is over the neighbourhood where the weights $w_{dr}$ are non-zero. $\gamma$ is a edge preservation hyper-parameter and $\epsilon$ is small modification the penalty function used to prevent divide by zero’s.

The $\kappa$ image is the spatially-varying penalties as before.

By default, a 3x3 or 3x3x3 neigbourhood is used where the weights are set to x-voxel_size divided by the Euclidean distance between the points.

PLSPrior (PET)

Class for Parallel Level Sets prior. Inherits from Prior.

Implements the anatomical penalty function, Parallel Level Sets (PLS), proposed by Matthias J. Ehrhardt et. al in "PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets", IEEE Trans. med. Imag., vol. 35, no. 9, Sep 2016 (https://doi.org/10.1109/TMI.2016.2549601). Note that PLS becomes smoothed TV when a uniform anatomical image is provided.

The prior has 2 parameters $\alpha$ (alpha) and $\eta$ (eta). It is computed for an image $f$ as $$\phi(f) = \sqrt{\alpha^2 + |\nabla f|^2 - {(\nabla f,\xi)}^2}$$ where $\nabla$ is the finite difference operator (not taking voxel-sizes into account) and $\xi$ is the normalised gradient of the anatomical image $v$ calculated as follows: $$\xi = (\nabla v) / )\sqrt{|\nabla v|^2 + \eta^2}$$ The parameter $\alpha$ controls the edge-preservation property of PLS, and depends on the scale of the emission image, and $\eta$ avoids division by zero, and depends on the scale of the anatomical image.

An image kappa can be used to have spatially-varying penalties such as in Jeff Fessler's papers. It should have identical dimensions to the image for which the penalty is computed. If kappa is not set, this class will effectively use 1 for all kappa values.

Methods (in addition to those of Prior):
set_alpha               Sets alpha
get_alpha               Returns alpha
set_eta                 Sets eta
get_eta                 Returns eta
set_anatomical_image    Sets anatomical image
set_anatomical_filename Specifies the name of the file containing 
                        anatomical image
get_anatomical_image    Returns anatomical image
get_anatomical_grad     Returns the gradient of the anatomical image (internal)
set_kappa               Sets kappa
set_kappa_filename      Specifies the name of the file containing kappa
get_kappa               Returns kappa
get_norm                (internal)
set_only_2D             Use the penalty in 2D only.
get_only_2D             Get the value of only_2D

Functions

preprocess_acquisition_data (MR)  Preprocesses the MR acquisition data.  

make_Poisson_loglikelihood (PET)  Returns Poisson objective function.
set_verbosity (STIR)              Set output verbosity
get_verbosity (STIR)              Get output verbosity

Compatibility with CCPi CIL

The CCPi CIL Python Framework for development of novel reconstruction algorithms can be used with SIRF classes such as DataContainer, ImageData, AcquisitionData and AcquisitionModel. To achieve this goal, a number of methods and properties were added to SIRF Python classes for compatibility.

AcquisitionModel

PET and MR AcquisitionModels can be used instead of the CCPi Operator. Operators have the main methods direct and adjoint to perform the forward and backward projections. The adjoint method exists only if the AcquisitionModel is linear. In all what follows the parameter out can be passed when user wants to use a specific instance to retrieve the result.

The methods that have been added both in MR and PET :

  1. direct(img, out=None) Projects an image into the (simulated) acquisition space, alias of forward.
  2. adjoint(data, out=None) Back-projects acquisition data to image space, alias of backward.
  3. is_affine() Returns if the acquisition model is affine (i.e. corresponding to A*x+b), currently True
  4. is_linear() Returns whether the acquisition model is linear (i.e. corresponding to A*x, with zero background term). True for MR and PET without accidental coincidences/scatter term.

PET Specific:

  1. direct(image, subset_num = 0, num_subsets = 1, out = None) Projects an image into the (simulated) acquisition space, alias of forward. The parameter out can be used to pass an AcquisitionData instance to store the result of direct into.
  2. adjoint(ad, subset_num = 0, num_subsets = 1, out = None) Back-projects acquisition data into image space, if the AcquisitionModel is linear.

The PET acquisition model relates an image x to the acquisition data y as

(F)    y = S (G x + [a]) + [b]

where G is the geometric (ray tracing) projector from the image voxels to the scanner's pairs of detectors (bins); a and b are optional additive and background terms representing the effects of accidental coincidendes and scattering; S is the Acquisition Sensitivity Map. The following additional methods are added to the PET AcquisitionModel:

  1. get_linear_acquisition_model() Returns a new AcquisitionModel corresponding to the linear part of the current one.
  2. get_background_term() Returns the background term of the AcquisitionModel
  3. get_additive_term() Returns the additive term of the AcquisitionModel
  4. get_constant_term() Returns the sum of the additive and background terms of the AcquisitionModel

DataContainer

sirf.DataContainer has been added the method copy as an alias to clone. Below the list of methods currently implemented on CCPi that have been added to SIRF DataContainers. In all what follows the parameter out allows the user to pass a DataContainer to store the result of the operation to.

  1. (Pixelwise) binary operations, notice that the CCPi implementation allows optional *args, **kwargs input parameters:
    1. add(self, other , out=None)
    2. subtract(self, other, out=None):
    3. multiply(self, other , out=None)
    4. divide(self, other , out=None)
    5. power(self, other , out=None)
    6. maximum(self, other , out=None)
    7. minimum(self, other , out=None)
  2. all in-place algebra operations
  3. (Pixelwise) unary operations:
    1. abs(self, out=None)
    2. sign(self, out=None)
    3. sqrt(self, out=None)
    4. exp(self, out=None)
    5. log(self, out=None)
  4. reductions
    1. sum(self)
    2. norm(self)
    3. squared_norm(self), returns the square of the call of norm()

Appendix

Acquisition data storage scheme management

SIRF offers the users two options in handling acquisition data generated by SIRF scripts. The default one keeps all acquisition data generated by the script in scratch files deleted after the script terminates. An alternative one stores acquisition data in memory. The user can specify the storage scheme to be employed by calling a static method set_storage_scheme of AcquisitionData class:

AcquisitionData.set_storage_scheme(scheme)

where scheme is either "memory" or "file". To see which scheme is currently used, use

scheme = AcquisitionData.get_storage_scheme()

A particular setting of storage scheme by a Matlab script or a Python script run from Spyder is persistent: any script run afterwards will use the same storage scheme unless a different storage scheme is explicitly set by set_storage_scheme or Matlab/Spyder is re-started.

Programming chains of Gadgetron gadgets

Gadgetron is an MR reconstruction framework which was designed to process a datastream, i.e. rather than waiting for a complete 3D k-space to be acquired, each readout (frequency encoding line) is processed immediately (if possible - e.g. Fourier transform along phase encoding can only be applied once all phase encoding lines have been acquired). The reconstruction is performed by a chain of gadgets, i.e. pieces of code implementing specific tasks. The chain of gadgets runs on the server, which can be just a command line window, or it can be another computer or a VM. In order to set up the chain, the server needs to receive an xml text describing it from the client, which again can be another command line window on the same or another computer. The first gadget in the chain then starts waiting for acquisition data to arrive from the client in chunks of certain size. Having processed a chunk of data, the first gadget passes the result to the second and starts processing the next chunk and so on. The last gadget sends the reconstructed images back to the client.

Creating and running gadget chains by SIRF script

The standard way of using Gadgetron is to run gadgetron_ismrmrd_client from a command line (with Gadgetron running in another terminal window), providing the name of the raw data file (in HDF5 format) and the name of the xml file containing the description of the gadget chain via command-line options. SIRF offers an equivalent alternative whereby the data and the gadget chain are defined in a Python or Matlab script. The gadget chain is defined by creating a Reconstructor object and providing the list of gadgets descriptions as an argument:

my_recon = Reconstructor(my_gadget_list);

Here my_gadget_list is a list of strings in Python or a cell array of strings in Matlab, each string describing a gadget in the following format:

[label:]gadget_name[(property1=value1[,property2=value2,...])]

where the names of the gadget and its properties are same as in Gadgetron xml files, and an optional label can be used to change the labelled gadget properties at any time by using set_gadget_property method:

my_recon.set_gadget_property(label, property, value);

The following example of a gadget chain definition is taken from demo script fully_sampled_recon_single_chain.py:

recon = Reconstructor(['RemoveROOversamplingGadget', \
    'AcquisitionAccumulateTriggerGadget(trigger_dimension=repetition)', \
    'BucketToBufferGadget(split_slices=true, verbose=false)', \
    'SimpleReconGadget', 'ImageArraySplitGadget', 'ex:ExtractGadget'])
# ExtractGadget defines which type of image should be returned:
# none      0
# magnitude 1
# real      2
# imag      4
# phase     8
# max       16
# in this example '5' returns both magnitude and imag
recon.set_gadget_property('ex', 'extract_mask', 5)

The input data is defined by creating an AcquisitionData object and passing it to the reconstruction object via its method set_input:

acq_data = AcquisitionData(input_file_name);
my_recon.set_input(acq_data);

and the reconstruction is performed by calling the method process, and the reconstructed images are returned as an ImageData object by the method get_output:

my_recon.process();
image_data = my_recon.get_output();

While the way to use Gadgetron just described is the most efficient performance-wise, some users may like to get more involved in the reconstruction process. SIRF offers such users an opportunity to split a standard reconstruction chain into sub-chains and process intermediate data. For example, the chain defined above can be split into an acquisition processing chain that removes oversampling, a shortened reconstruction chain and an image processing chain:

acq_proc = AcquisitionDataProcessor(['RemoveROOversamplingGadget'])
acq_proc.set_input(acq_data)
acq_proc.process()
preprocessed_data = acq_proc.get_output()

# do something with preprocessed data here

recon = Reconstructor\
    (['AcquisitionAccumulateTriggerGadget(trigger_dimension=repetition)', \
    'BucketToBufferGadget(split_slices=true, verbose=false)',
    'SimpleReconGadget', 'ImageArraySplitGadget'])
recon.set_input(preprocessed_data)
recon.process()
complex_image_data = recon.get_output()

# do something with the complex image data here

img_proc = ImageDataProcessor(['ExtractGadget(extract_mask=1)'])
img_proc.set_input(complex_image_data)
img_proc.process()
real_image_data = img_proc.get_output()

SIRF gadget library

This section provides a concise description of Gadgetron gadgets that can be used by current SIRF release scripts in a way described in the previous section. For further information consult Gadgetron documentation.

Below internal<N> refers to Gadgetron data objects to which SIRF does not provide interface at present. We emphasize that splitting Gadgetron chains into sub-chains in a way described in the previous section only makes sense if the input of the first gadget and the output of the last gadget of each sub-chain are either AcquisitionData or ImageData.

RemoveROOversamplingGadget

input output parameters
AcquisitionData AcquisitionData none

Removes the oversampling along the readout direction.

NoiseAdjustGadget

input output parameters
AcquisitionData AcquisitionData none

Ensures that the noise between different receiver coils is not correlated and that each receiver coils has a similar noise level.

AsymmetricEchoAdjustGadget

input output parameters
AcquisitionData AcquisitionData none

Pads each readout with zeros to compensate for partial echo acquisitions.

AcquisitionAccumulateTriggerGadget

input output parameters default values
AcquisitionData internal1 trigger_dimension "repetition"
sorting_dimension "slice"

Collects lines of k-space until a certain trigger condition is encountered, i.e., when there is enough data to reconstruct an image. Internally, this data is put into a "bucket" which can be thought of as a collection of unsorted k-sace readouts.

BucketToBufferGadget

input output parameters default values
internal1 internal2 N_dimension ""
S_dimension ""
split_slices "true"
ignore_segment "true"
verbose "true"

Inserts the data collected in a bucket into a buffer. A buffer is more suitable for the reconstruction processing.

GenericReconEigenChannelGadget

input output parameters default values
internal2 internal3 debug_folder ""
perform_timing "true"
verbose "true"
average_all_ref_N "true"
average_all_ref_S "true"
upstream_coil_compression "true"
upstream_coil_compression_thres "0.002"
upstream_coil_compression_num_modesKep "0"

Coil compression by calculating the Eigen values along the coil dimension and only keeping the values above a certain threshhold.

GenericReconPartialFourierHandlingFilterGadget

input output parameters default values
internal2 internal3 debug_folder ""
perform_timing "false"
verbose "false"
skip_processing_meta_field "Skip_processing_after_recon"
partial_fourier_filter_RO_width "0.15"
partial_fourier_filter_E1_width "0.15"
partial_fourier_filter_E2_width "0.15"
partial_fourier_filter_densityComp "false"

Handle partial Fourier encoding and apply filter along the partial Fourier directions.

GenericReconKSpaceFilteringGadget

input output parameters default values
internal4 internal5 debug_folder ""
perform_timing "false"
verbose "false"
skip_processing_meta_field "Skip_processing_after_recon"
filterRO "Gaussian"
filterRO_sigma "1.0"
filterRO_width "0.15"
filterE1 "Gaussian"
filterE1_sigma "1.0"
filterE1_width "0.15"
filterE2 "Gaussian"
filterE2_sigma "1.0"
filterE2_width "0.15"

Apply a filter along different k-space dimensions on an image. Image is transformed to k-space, filter is applied and image is transformed back.

SimpleReconGadget

input output parameters
internal2 internal3 none

Performs simple fast Fourier transforms to transform acquired k-space data to image space.

GenericReconCartesianReferencePrepGadget

input output parameters default values
internal2 internal4 debug_folder ""
perform_timing "true"
verbose "true"
average_all_ref_N "true"
average_all_ref_S "true"
prepare_ref_always "true"

Selects the reference data used to calculate the GRAPPA kernel

GenericReconCartesianGrappaGadget

input output parameters default values
internal4 internal5 debug_folder ""
perform_timing "true"
verbose "true"
image_series "0"
coil_map_algorithm "Inati"
send_out_gfactor "true"
downstream_coil_compression "true"
downstream_coil_compression_thres "0.01"
downstream_coil_compression_num_modesKept "0"

Performs GRAPPA kernel calibration, calculate coil sensitivity maps and carry out unfolding.

GenericReconFieldOfViewAdjustmentGadget

input output parameters default values
internal5 internal6 debug_folder ""
perform_timing "false"
verbose "false"

Adjusts Field Of View and image resolution according to the parameters given for the reconstructed image in the file header.

GenericReconImageArrayScalingGadget

input output parameters default values
internal6 internal3 perform_timing "false"
verbose "false"
min_intensity_value "64"
max_intensity_value "4095"
scalingFactor "10.0"
scalingFactor_dedicated "100.0"
use_constant_scalingFactor "true"
auto_scaling_only_once "true"

Applies scaling to image, g-factor map, SNR map and/or SNR standard deviation map.

ImageArraySplitGadget

input output parameters
internal3 ImageData none

Splits array of images (7D: [X, Y, Z, CHA, N, S, LOC]) into individual images (4D: [X, Y, Z, CHA])

ExtractGadget

input output parameters default values
ImageData ImageData extract_mask "1"

Extracts a certain type of image data from the reconstructed image stream, i.e. extract_mask = 1 yields images' magnitudes, extract_mask = 2 yields real parts of images.

ComplexToFloatGadget

input output parameters
ImageData ImageData none

Depending on the image type, the magnitude, real, imaginary or phase of the complex image is returned.

FloatToShortGadget

input output parameters default values
ImageData ImageData min_intensity "0"
max_intensity "32767"
intensity_offset "0"

Scales and transforms images from float to short.

SimpleReconGadgetSet

A chain of Gadgetron gadgets

AcquisitionAccumulateTriggerGadget
BucketToBufferGadget
SimpleReconGadget
ImageArraySplitGadget

for fully sampled reconstruction.

input output parameters default values
AcquisitionData ImageData N_dimension ""
S_dimension ""
sorting_dimension "slice"
trigger_dimension "repetition"
split_slices "true"

Using the C++ libraries

The Python/MATLAB interface is based on the underlying C++ code. However, the mapping is currently not one-to-one. Python/MATLAB classes do correspond to C++ classes but might have extra methods or vice versa.

The C++ library is currently still somewhat preliminary, although quite usable of course. We use Doxygen to generate the documentation for the C++ classes. The documentation for the current SIRF release can be found via the SyneRBI website (currently the link is in the Wiki, accessible via the Software tab).

If you want to develop a program or library that uses SIRF functionality, we recommend using CMake for your project. After SIRF v3.1.0 was released, we added CMake code to SIRF such that building SIRF will export a CMake config file to enable this. See the ../examples/C++ folder for an example on how to use this.