-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChatbot_proper.py
121 lines (93 loc) · 3.46 KB
/
Chatbot_proper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import random
import json
import torch
from model import NeuralNet
from nltk_utils import bag_of_words, tokenize
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('intents.json', 'r') as json_data:
intents = json.load(json_data)
FILE = "data.pth"
data = torch.load(FILE)
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
#imported training data from data.pth which is output from train.py and model from model.py
# importing echobot1 functions
import json
import requests
import time
import urllib
import telegram
TOKEN = "XXX"
URL = "https://api.telegram.org/bot{}/".format(TOKEN)
def get_url(url):
response = requests.get(url)
content = response.content.decode("utf8")
return content
def get_json_from_url(url):
content = get_url(url)
js = json.loads(content)
return js
def get_updates(offset): #gets json file from URL
url = URL + "getUpdates"
if offset:
url += "?offset={}".format(offset)
js = get_json_from_url(url)
return js
def get_last_update_id(updates):
update_ids = []
for update in updates["result"]:
update_ids.append(update["update_id"])
return max(update_ids, default = last_update_id)
def get_last_chat_text(updates):
# num_updates = len(updates["result"])
# last_update = num_updates - 1
text = updates["result"][-1]["message"]["text"] #text input
return text
def get_last_chat_id(updates):
chat_id = updates["result"][-1]["message"]["chat"]["id"]
return chat_id
def send_message(output,chat_id):
bot = telegram.Bot(token=TOKEN)
bot.sendMessage(chat_id=chat_id, text = output)
def main():
input_text = get_last_chat_text(updates)
return input_text
bot_name = "XXX"
print("Let's chat! (type 'quit' to exit)")
last_update_id = 0
while True:
updates = get_updates(last_update_id) #returns json file
for last_update_id in updates["result"]:
main()
input_text = main()
if input_text == "quit":
break
input_text = tokenize(input_text)
X = bag_of_words(input_text, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X).to(device)
output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for intent in intents['intents']:
if tag == intent["tag"]:
output = f"{random.choice(intent['responses'])}"
else:
output = f"{bot_name}: I do not understand..."
print(output)
chat_id = get_last_chat_id(updates)
print(chat_id)
send_message(output, chat_id)
time.sleep(0.1)
break
last_update_id = get_last_update_id(updates) + 1 #returns max_id in the json file and adds 1