Separating application code from configuration is one of the factors when building an application using 12-factor. This allows the same application to be deployed across multiple environments, such as dev, test, staging and production. It also allows the application to be more portable.
Kubernetes has native constructs like ConfigMap and Secrets that allow you to decouple configuration artifacts from the image content to keep containerized applications portable. In addition, other services as AWS Parameter Store or Hashicorp Vault can be used to store that information as well.
This chapter will cover how these constructs and services can be used to store configuration information and secrets.
-
ConfigMap is just a set of key-value pairs. It allow you to decouple configuration artifacts from image content.
-
Secrets allows separating sensitive information such as credentials and keys from an application.
ConfigMap is similar to Secrets, but provides a means of working with strings that don’t contain sensitive information.
Make sure you change to that directory before giving any commands in this chapter.
This chapter uses a cluster with 3 master nodes and 5 worker nodes as described here: multi-master, multi-node gossip based cluster.
All configuration files for this chapter are in the config-secrets
directory.
This section will explain:
-
Pass configuration information to a Pod
-
Define environment variables in a Pod using ConfigMap
Create a ConfigMap:
$ kubectl apply -f ./templates/redis-configmap.yaml configmap "redis-config" created
redis-configmap.yaml
is a standard resource configuration file. It defines the configuration information as:
data: redis-config: | maxmemory=2mb maxmemory-policy=allkeys-lru
The configuration data is stored in the main key data
. redis-config
is an attribute inside this key where the configuration information for the Redis pod is defined as key-value pairs.
Get the list of ConfigMaps:
$ kubectl get configmap NAME DATA AGE redis-config 1 14s
Get more details about the created ConfigMap:
$ kubectl get configmap/redis-config -o yaml
apiVersion: v1
items:
- apiVersion: v1
data:
redis-config: |
maxmemory 2mb
maxmemory-policy allkeys-lru
kind: ConfigMap
metadata:
creationTimestamp: 2017-10-22T18:38:27Z
labels:
k8s-app: redis
name: redis-config
namespace: default
resourceVersion: "302238"
selfLink: /api/v1/namespaces/default/configmaps/redis-config
uid: 316309d0-b758-11e7-8c3f-06329c8974cc
kind: List
metadata:
resourceVersion: ""
selfLink: ""
The configuration information is shown as key/value pairs in the data
key.
We created a ConfigMap using a resource configuration file. Other ways to create ConfigMap are listed below:
Note
|
These ConfigMaps are using the exact same name as the one previously created. If you like to try the commands, then you either need to give a different name to the ConfigMap or delete the previously created ConfigMap using the command kubectl delete -f ./templates/redis-configmap.yaml .
|
-
kubectl create configmap --from-literal=<key>:<value>
. Multiple--from-literal=<key>:<value>
options can be used to define different key/value pairs. For example:$ kubectl create configmap redis-config --from-literal=maxmemory=2mb --from-literal=maxmemory-policy=allkeys-lru configmap "redis-config" created
More details about the ConfigMap can be obtained as:
$ kubectl get configmap/redis-config -o yaml apiVersion: v1 data: maxmemory: 2mb maxmemory-policy: allkeys-lru kind: ConfigMap metadata: creationTimestamp: 2017-10-22T15:29:31Z name: redis-config namespace: default resourceVersion: "287452" selfLink: /api/v1/namespaces/default/configmaps/redis-config uid: cccf20b7-b73d-11e7-8c3f-06329c8974cc
-
kubectl create configmap redis-config --from-file=<properties file>
where<properties file>
is a property file with key/value pairs. For example,templates/redis-config
looks like:maxmemory 2mb maxmemory-policy allkeys-lru
And now the ConfigMap can be created as:
$ kubectl create configmap redis-config --from-file=templates/redis-config configmap "redis-config" created
More details about the ConfigMap can be obtained as:
$ kubectl get configmap/redis-config -o yaml apiVersion: v1 data: redis-config: | maxmemory=2mb maxmemory-policy=allkeys-lru kind: ConfigMap metadata: creationTimestamp: 2017-10-22T15:56:08Z name: redis-config namespace: default resourceVersion: "289533" selfLink: /api/v1/namespaces/default/configmaps/redis-config uid: 84901162-b741-11e7-8c3f-06329c8974cc
The filename becomes a key stored in the data section of the ConfigMap. The file contents become the key’s value.
At the end of this section, you’ll have created a ConfigMap redis-config
.
A ConfigMap must be created before referencing it in a Pod specification (unless you mark the ConfigMap as “optional”). If you reference a ConfigMap that doesn’t exist would , the Pod won’t start.
Let’s use redis-config
ConfigMap to create our redis.conf
configuration file in the pod redis-pod
. It maps the ConfigMap to the volume where the configuration resides:
$ kubectl apply -f ./templates/redis-pod.yaml pod "redis-pod" created
Wait for the pod to run:
$ kubectl get pods NAME READY STATUS RESTARTS AGE redis-pod 1/1 Running 0 12m
Check logs from the pod to verify that Redis has started:
$ kubectl logs redis-pod _._ _.-``__ ''-._ _.-`` `. `_. ''-._ Redis 2.8.19 (00000000/0) 64 bit .-`` .-```. ```\/ _.,_ ''-._ ( ' , .-` | `, ) Running in stand alone mode |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379 | `-._ `._ / _.-' | PID: 6 `-._ `-._ `-./ _.-' _.-' |`-._`-._ `-.__.-' _.-'_.-'| | `-._`-._ _.-'_.-' | http://redis.io `-._ `-._`-.__.-'_.-' _.-' |`-._`-._ `-.__.-' _.-'_.-'| | `-._`-._ _.-'_.-' | `-._ `-._`-.__.-'_.-' _.-' `-._ `-.__.-' _.-' `-._ _.-' `-.__.-'
[6] 22 Oct 18:39:45.386 # Server started, Redis version 2.8.19 [6] 22 Oct 18:39:45.386 # WARNING you have Transparent Huge Pages (THP) support enabled in your kernel. This will create latency and memory usage issues with Redis. To fix this issue run the command 'echo never > /sys/kernel/mm/transparent_hugepage/enabled' as root, and add it to your /etc/rc.local in order to retain the setting after a reboot. Redis must be restarted after THP is disabled. [6] 22 Oct 18:39:45.386 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128. [6] 22 Oct 18:39:45.386 * The server is now ready to accept connections on port 6379
Validate that your redis cluster picked up the appropriate configuration:
$ kubectl exec redis-pod -it redis-cli 127.0.0.1:6379> CONFIG GET maxmemory 1) "maxmemory" 2) "2097152" 127.0.0.1:6379> CONFIG GET maxmemory-policy 1) "maxmemory-policy" 2) "allkeys-lru" 127.0.0.1:6379> quit
You should see the same values that were specified in ./templates/redis-configmap.yaml
outputted in the above commands.
Now, changing the pod configuration would involve the following steps:
-
Edit
redis-configmap.yaml
-
Update the ConfigMap using the command:
kubectl apply -f templates/redis-configmap.yaml
-
Wrap the pod in a Deployment
-
Terminate the pod, Deployment will restart the pod and pick up new configuration
The data from ConfigMap can be used to initialize environment variables in a pod. We’ll use arungupta/print-hello
image to print “Hello World” on the console. The number of times this message is printed is defined by an environment variable COUNT
. This value of this variable is defined in the ConfigMap.
-
Create a ConfigMap:
$ kubectl create configmap hello-config --from-literal=COUNT=2 configmap "hello-config" created
-
Get more details about this ConfigMap:
$ kubectl get configmap/hello-config -o yaml apiVersion: v1 data: COUNT: "2" kind: ConfigMap metadata: creationTimestamp: 2017-10-26T21:40:10Z name: hello-config namespace: default resourceVersion: "92516" selfLink: /api/v1/namespaces/default/configmaps/hello-config uid: 3dacb22f-ba96-11e7-ab9c-123f969a2ce2
-
Use this ConfigMap to create a pod:
$ kubectl apply -f templates/app-pod.yaml pod "app-pod" created
The pod configuration file looks like:
apiVersion: v1 kind: Pod metadata: labels: name: app-pod name: app-pod spec: containers: - name: app image: arungupta/print-hello:latest env: - name: COUNT valueFrom: configMapKeyRef: name: hello-config key: COUNT ports: - containerPort: 8080
-
Observe logs from the pod:
$ kubectl logs -f app-pod npm info it worked if it ends with ok npm info using [email protected] npm info using [email protected] npm info lifecycle [email protected]~prestart: [email protected] npm info lifecycle [email protected]~start: [email protected]
> [email protected] start /usr/src/app > node server.js
Running on http://0.0.0.0:8080
-
In a new terminal, expose the pod as a Service:
$ kubectl expose pod app-pod --port=80 --target-port=8080 --name=app service "app" exposed
-
Start Kubernetes proxy:
kubectl proxy
-
In a new terminal, access the service as:
$ curl http://localhost:8001/api/v1/proxy/namespaces/default/services/app/ printed 2 times
The pod logs are refreshed as well:
Hello world 0 Hello world 1
-
Edit the ConfigMap:
$ kubectl edit configmap/hello-config
-
Change the value to
4
-
Terminate the pod:
$ kubectl delete pod/app-pod pod "app-pod" deleted
-
Run the pod again:
kubectl create -f templates/app-pod.yaml pod "app-pod" created
-
Access the service again:
curl http://localhost:8001/api/v1/proxy/namespaces/default/services/app/ printed 4 times
-
Logs from the pod are refreshed:
Hello world 0 Hello world 1 Hello world 2 Hello world 3
In this section we will demonstrate how to place secrets into the Kubernetes cluster and then show multiple ways of retrieving those secretes from within a pod.
First encode the secrets you want to apply, for this example we will use the username admin
and the password password
echo -n "admin" | base64 echo -n "password" | base64
Both of these values are already written in the file ./templates/secret.yaml
. The configuration looks like:
apiVersion: v1
kind: Secret
metadata:
name: mysecret
type: Opaque
data:
username: YWRtaW4=
password: cGFzc3dvcmQ=
You can now insert this secret in the Kubernetes cluster with the following command:
kubectl apply -f ./templates/secret.yaml
The list of created secrets can be seen as:
$ kubectl get secrets NAME TYPE DATA AGE default-token-4cqsx kubernetes.io/service-account-token 3 8h mysecret Opaque 2 6s
The values of the secret are displayed as Opaque
.
Get more details about the secret:
$ kubectl describe secrets/mysecret Name: mysecret Namespace: default Labels: <none> Annotations: <none>
Type: Opaque
Data ==== password: 8 bytes username: 5 bytes
Once again, the values of the secret are not shown.
Deploy the pod:
kubectl apply -f ./templates/pod-secret-volume.yaml
The pod configuration file looks like:
apiVersion: v1 kind: Pod metadata: name: pod-secret-volume spec: containers: - name: pod-secret-volume image: redis volumeMounts: - name: foo mountPath: "/etc/foo" readOnly: true volumes: - name: foo secret: secretName: mysecret
Open a shell to the pod to see the secrets:
kubectl exec -it pod-secret-volume /bin/bash ls /etc/foo cat /etc/foo/username ; echo cat /etc/foo/password ; echo
The above commands should result in the plain text values, the decoding is done for you.
Delete the pod:
kubectl delete -f ./templates/pod-secret-volume.yaml
Deploy the pod:
kubectl apply -f ./templates/pod-secret-env.yaml
The pod configuration file looks like:
apiVersion: v1 kind: Pod metadata: name: pod-secret-env spec: containers: - name: pod-secret-env image: redis env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username - name: SECRET_PASSWORD valueFrom: secretKeyRef: name: mysecret key: password restartPolicy: Never
Open a shell to the pod to see the secrets:
kubectl exec -it pod-secret-env /bin/bash echo $SECRET_USERNAME echo $SECRET_PASSWORD
The above commands illustrate how to see the secret values via environment variables.
Amazon EC2 Systems Manager eases the configuration and management of Amazon EC2 instances and associated resources. One of the features of Systems Manager is Parameter Store that provides a centralized location to store, provide access control, and easily reference your configuration data, whether plain-text data such as database strings or secrets such as passwords, encrypted through AWS Key Management Service (KMS).
KMS helps you encrypt your sensitive information and protect the security of your keys. Additionally, all calls to the parameter store are recorded with AWS CloudTrail so that they can be audited. Access to each parameter store secrets can be scoped with IAM.
Parameter Store allows three types of configuration data to be stored:
-
String
-
List of string
-
Secure string
This section will show how to create a secure string using AWS CLI and access it in a Pod.
-
Create a new encryption key: https://console.aws.amazon.com/iam/home#/encryptionKeys/
-
Click on
Create key
. If you haven’t used the KMS service before, clickGet Started
. -
Specify the
Alias
ask8s-key
Click on
Next Step
. -
Take the defaults for
Add Tags
and click onNext Step
. -
Select the IAM user(s) and roles that can administer this key through the KMS API
-
Select the IAM user(s) and roles that can use this key to encrypt and decrypt data from within applications. We’ll use the IAM role that is assigned to the worker nodes in the Kubernetes cluster created by kops.
-
Preview key policy:
{ "Id": "key-consolepolicy-3", "Version": "2012-10-17", "Statement": [ { "Sid": "Enable IAM User Permissions", "Effect": "Allow", "Principal": { "AWS": [ "arn:aws:iam::<account-id>:root" ] }, "Action": "kms:*", "Resource": "*" }, { "Sid": "Allow access for Key Administrators", "Effect": "Allow", "Principal": { "AWS": [ "arn:aws:iam::<account-id>:user/arun", "arn:aws:iam::<account-id>:role/nodes.example.cluster.k8s.local" ] }, "Action": [ "kms:Create*", "kms:Describe*", "kms:Enable*", "kms:List*", "kms:Put*", "kms:Update*", "kms:Revoke*", "kms:Disable*", "kms:Get*", "kms:Delete*", "kms:TagResource", "kms:UntagResource", "kms:ScheduleKeyDeletion", "kms:CancelKeyDeletion" ], "Resource": "*" }, { "Sid": "Allow use of the key", "Effect": "Allow", "Principal": { "AWS": [ "arn:aws:iam::<account-id>:role/nodes.example.cluster.k8s.local" ] }, "Action": [ "kms:Encrypt", "kms:Decrypt", "kms:ReEncrypt*", "kms:GenerateDataKey*", "kms:DescribeKey" ], "Resource": "*" }, { "Sid": "Allow attachment of persistent resources", "Effect": "Allow", "Principal": { "AWS": [ "arn:aws:iam::<account-id>:role/nodes.example.cluster.k8s.local" ] }, "Action": [ "kms:CreateGrant", "kms:ListGrants", "kms:RevokeGrant" ], "Resource": "*", "Condition": { "Bool": { "kms:GrantIsForAWSResource": true } } } ] }
-
Click on
Finish
. -
Select
IAM
,Encryption Keys
,k8s-key
and copy the ARN of the key.
For a Kubernetes cluster created by kops, EC2 worker nodes use an instance profile to allow the EC2 instances to access other AWS services. This role must be updated to allow the worker nodes to read the secrets from Parameter Store.
In the IAM Console click roles
and type nodes
into the search box. Find the nodes.example.cluster.k8s.local
role
and click it. In the Permissions tab, expand the inline policy for nodes.example.cluster.k8s.local
and click
Edit policy
. Add the ssm:GetParameter
permission to the policy so the policy looks similar to the one below.
{ "Version": "2012-10-17", "Statement": [ . . . }, { "Effect": "Allow", "Action": [ "ssm:GetParameter" ], "Resource": [ "arn:aws:ssm:us-east-1:<account-id>:parameter/GREETING", "arn:aws:ssm:us-east-1:<account-id>:parameter/NAME" ] } ] }
Only the value of the secure string parameter is encrypted. The name of the parameter, description, and other properties are not encrypted.
-
A secret in AWS Parameter is created as a secure string. Create a secure string:
$ aws ssm put-parameter \ --name GREETING \ --value Hello \ --type SecureString \ --key-id arn:aws:kms:us-east-1:<account-id>:key/414a963b-7fe4-4a61-b19f-ea408b9bda3b { "Version": 1 }
This will create a secret in the Parameter Store using the KMS key.
-
Get the value of the created secret:
$ aws ssm get-parameter --name GREETING { "Parameter": { "Version": 1, "Type": "SecureString", "Name": "GREETING", "Value": "AQICAHghFIWYznvdUrX6qDhd5xLFHpoaQ5WL1EaHqsbkenfFEwHdqTpU8URwKMf2H9XmMyMgAAAAYzBhBgkqhkiG9w0BBwagVDBSAgEAME0GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM0jZaUadELhmiCzj4AgEQgCBXVAZzfjac8P2AFrelnLaXb3z7ssZt2q/npxYAdJ9ABQ==" } }
By default, the encrypted value of the secret is shown in the output.
-
Decrypted value of the secret can be obtained:
$ aws ssm get-parameter --name GREETING --with-decryption { "Parameter": { "Version": 1, "Type": "SecureString", "Name": "GREETING", "Value": "Hello" } }
-
Create another secret:
$ aws ssm put-parameter \ --name NAME \ --value World \ --type SecureString \ --key-id arn:aws:kms:us-east-1:<account-id>:key/414a963b-7fe4-4a61-b19f-ea408b9bda3b { "Version": 1 }
These two secrets will be consumed in the Pod.
The directory images/parameter-store-kubernetes
contains a Java application that reads secrets from AWS Parameter Store. This application is then packaged as a Pod and deployed in the cluster.
The Pod configuration is shown:
apiVersion: v1 kind: Pod metadata: name: pod-parameter-store spec: containers: - name: pod-parameter-store image: arungupta/parameter-store-kubernetes:latest restartPolicy: Never
Create the Pod:
$ kubectl apply -f templates/pod-parameter-store.yaml pod "pod-parameter-store" configured
Check the logs of the Pod:
$ kubectl logs pod-parameter-store parameter store: HelloWorld
This shows that the Java application has been able to read both the NAME and GREETING secrets from AWS Parameter Store.
Hashicorp Vault is a tool for managing secrets. It secures, stores and tightly controls access to tokens, passwords, certificates, API keys and other secrets.
This section explains how to install and configure Vault on AWS, store secrets, and access them in a Pod. The instructions are inspired from https://github.com/briankassouf/vault-kubernetes-demo.
We need an EC2 instance for hosting Vault server. This server needs to be accessible to Kubernetes cluster.
-
Create an EC2 instance with Linux flavor. For example
m4.large
withAmazon Linux
-
Make sure to allow port
8200
as part ofConfigure Security Group
-
Configure security group to allow 8200 (not TLS by default, more config required for TLS)
-
SSH into the machine:
ssh -i ~/.ssh/arun-us-east1.pem [email protected]
-
-
Note down the private IP address of the EC2 console. This is needed to start our Vault server.
-
Download Vault server:
wget https://releases.hashicorp.com/vault/0.9.0/vault_0.9.0_linux_amd64.zip
-
Unzip Vault:
unzip vault_0.9.0_linux_amd64.zip
-
Start Vault server:
[ec2-user@ip-172-31-26-180 ~]$ ./vault server -dev-listen-address=ip-172-31-26-180.ec2.internal:8200 -dev & [1] 26687 [ec2-user@ip-172-31-26-180 ~]$ ==> Vault server configuration: Cgo: disabled Cluster Address: https://ip-172-31-26-180.ec2.internal:8201 Listener 1: tcp (addr: "ip-172-31-26-180.ec2.internal:8200", cluster address: "172.31.26.180:8201", tls: "disabled") Log Level: info Mlock: supported: true, enabled: false Redirect Address: http://ip-172-31-26-180.ec2.internal:8200 Storage: inmem Version: Vault v0.9.0 Version Sha: bdac1854478538052ba5b7ec9a9ec688d35a3335 ==> WARNING: Dev mode is enabled! In this mode, Vault is completely in-memory and unsealed. Vault is configured to only have a single unseal key. The root token has already been authenticated with the CLI, so you can immediately begin using the Vault CLI. The only step you need to take is to set the following environment variables: export VAULT_ADDR='http://ip-172-31-26-180.ec2.internal:8200' The unseal key and root token are reproduced below in case you want to seal/unseal the Vault or play with authentication. Unseal Key: ZBfexpmasu0r4iba+t8tTlm4L5FQJ+JagglEhbfpxkU= Root Token: 4e93b3c6-c459-f166-e7e9-6c48044cfdb6 ==> Vault server started! Log data will stream in below: 2017/11/20 03:34:06.457231 [INFO ] core: security barrier not initialized 2017/11/20 03:34:06.457349 [INFO ] core: security barrier initialized: shares=1 threshold=1 2017/11/20 03:34:06.457475 [INFO ] core: post-unseal setup starting 2017/11/20 03:34:06.470532 [INFO ] core: loaded wrapping token key 2017/11/20 03:34:06.470542 [INFO ] core: successfully setup plugin catalog: plugin-directory= 2017/11/20 03:34:06.471226 [INFO ] core: successfully mounted backend: type=kv path=secret/ 2017/11/20 03:34:06.471239 [INFO ] core: successfully mounted backend: type=cubbyhole path=cubbyhole/ 2017/11/20 03:34:06.471348 [INFO ] core: successfully mounted backend: type=system path=sys/ 2017/11/20 03:34:06.471530 [INFO ] core: successfully mounted backend: type=identity path=identity/ 2017/11/20 03:34:06.475065 [INFO ] expiration: restoring leases 2017/11/20 03:34:06.475241 [INFO ] rollback: starting rollback manager 2017/11/20 03:34:06.475583 [INFO ] expiration: lease restore complete 2017/11/20 03:34:06.475583 [INFO ] identity: entities restored 2017/11/20 03:34:06.475628 [INFO ] identity: groups restored 2017/11/20 03:34:06.475641 [INFO ] core: post-unseal setup complete 2017/11/20 03:34:06.475778 [INFO ] core: root token generated 2017/11/20 03:34:06.475782 [INFO ] core: pre-seal teardown starting 2017/11/20 03:34:06.475783 [INFO ] core: cluster listeners not running 2017/11/20 03:34:06.475790 [INFO ] rollback: stopping rollback manager 2017/11/20 03:34:06.475848 [INFO ] core: pre-seal teardown complete 2017/11/20 03:34:06.475905 [INFO ] core: vault is unsealed 2017/11/20 03:34:06.475919 [INFO ] core: post-unseal setup starting 2017/11/20 03:34:06.475965 [INFO ] core: loaded wrapping token key 2017/11/20 03:34:06.475967 [INFO ] core: successfully setup plugin catalog: plugin-directory= 2017/11/20 03:34:06.476108 [INFO ] core: successfully mounted backend: type=kv path=secret/ 2017/11/20 03:34:06.476186 [INFO ] core: successfully mounted backend: type=system path=sys/ 2017/11/20 03:34:06.476318 [INFO ] core: successfully mounted backend: type=identity path=identity/ 2017/11/20 03:34:06.476328 [INFO ] core: successfully mounted backend: type=cubbyhole path=cubbyhole/ 2017/11/20 03:34:06.476889 [INFO ] expiration: restoring leases 2017/11/20 03:34:06.476945 [INFO ] rollback: starting rollback manager 2017/11/20 03:34:06.477008 [INFO ] identity: entities restored 2017/11/20 03:34:06.477015 [INFO ] identity: groups restored 2017/11/20 03:34:06.477022 [INFO ] core: post-unseal setup complete 2017/11/20 03:34:06.477105 [INFO ] expiration: lease restore complete
-
Run the command to configure Vault CLI to identify the server:
export VAULT_ADDR='http://ip-172-31-26-180.ec2.internal:8200'
-
Check status:
[ec2-user@ip-172-31-26-180 ~]$ ./vault status Type: shamir Sealed: false Key Shares: 1 Key Threshold: 1 Unseal Progress: 0 Unseal Nonce: Version: 0.9.0 Cluster Name: vault-cluster-01043c83 Cluster ID: 89ccbeb4-8af1-7dca-77bb-38f39c423a39 High-Availability Enabled: false
-
Download Vault server:
wget https://releases.hashicorp.com/vault/0.9.0/vault_0.9.0_linux_amd64.zip
-
Unzip Vault:
unzip vault_0.9.0_linux_amd64.zip
-
Find public IP address of the EC2 instance and setup an environment variable:
export VAULT_ADDR='<public-ip-address>'
For example, this command will look like:
export VAULT_ADDR='http://http://ec2-54-237-223-40.compute-1.amazonaws.com:8200'
-
Verify the status can be seen from your local machine:
$ vault status Type: shamir Sealed: false Key Shares: 1 Key Threshold: 1 Unseal Progress: 0 Unseal Nonce: Version: 0.9.0 Cluster Name: vault-cluster-01043c83 Cluster ID: 89ccbeb4-8af1-7dca-77bb-38f39c423a39 High-Availability Enabled: false
-
Create the service account to verify service account token during login:
$ kubectl create -f templates/vault-reviewer.yaml serviceaccount "vault-reviewer" created
-
Create the RBAC role that will be used by the service account to access the TokenReview API:
$ kubectl apply -f templates/vault-reviewer-rbac.yaml clusterrolebinding "role-tokenreview-binding" created
-
Creat a service account that will be used to login to the auth backend:
$ kubectl create -f templates/vault-auth.yaml serviceaccount "vault-auth" created
Service account token, Kubernetes API server address and the certificate used to access the API server are needed in order to configure the Kubernetes Auth backend. Let’s get these values.
-
On the local machine, read the service account token:
kubectl get secret \ $(kubectl get serviceaccount vault-reviewer -o jsonpath={.secrets[0].name}) \ -o jsonpath={.data.token} | base64 -D - eyJ . . . reg
-
Get the API server address:
$ kubectl config view -o jsonpath='{.clusters[*].cluster.server}' https://api-example-cluster-k8s-l-1dt7vk-41321592.us-east-1.elb.amazonaws.com https://192.168.99.100:8443
This is the address of API servers currently configured. The first one is for the cluster created by kops. Second one is for the minikube server, if its running. The first one is relevant for our case.
-
Extract the certificate
-
Find the default secret token:
$ kubectl get secrets | grep default default-token-kvjn9 kubernetes.io/service-account-token 3 4d
-
Use the default token name to extract the certificate:
$ kubectl get secrets default-token-kvjn9 -o jsonpath="{.data['ca\.crt']}" | base64 -D > ~/.kube/kops.crt
-
-
Now that all the required values are available, configure the Kubernetes auth backend.
-
Mount the Kubernetes auth backend:
$ vault auth-enable kubernetes Successfully enabled 'kubernetes' at 'kubernetes'!
-
Configure the auth backend:
$ vault write auth/kubernetes/config \ token_reviewer_jwt=<service-account-token> \ kubernetes_host=<api-server> \ kubernetes_ca_cert=@~/.kube/kops.crt
For example, here is how our command will look like:
$ vault write auth/kubernetes/config \ token_reviewer_jwt=eyJ . . . reg \ kubernetes_host=https://api-example-cluster-k8s-l-1dt7vk-41321592.us-east-1.elb.amazonaws.com \ kubernetes_ca_cert=@~/.kube/kops.crt Success! Data written to: auth/kubernetes/config
-
-
Create a role with service account name
vault-auth
in thedefault
namespace:$ vault write auth/kubernetes/role/demo \ bound_service_account_names=vault-auth \ bound_service_account_namespaces=default \ policies=kube-auth \ period=60s Success! Data written to: auth/kubernetes/role/demo
-
Read the role:
$ vault read auth/kubernetes/role/demo Key Value --- ----- bound_service_account_names [vault-auth] bound_service_account_namespaces [default] max_ttl 0 num_uses 0 period 60 policies [kube-auth] ttl 0
-
Create a policy for this role
$ vault policy-write kube-auth templates/kube-auth.hcl Policy 'kube-auth' written.
-
Write secrets to Vault:
$ vault write secret/creds GREETING=Hello NAME=World Success! Data written to: secret/creds
-
Check that this value can be read:
$ vault read -field=GREETING secret/creds Hello
Let’s deploy a Pod that is reading secrets from the Vault server. Here is the sequence of events that need to happen:
-
Pod needs to know the address of Vault server. This is passed as
VAULT_ADDR
environment variable. -
Pod reads the Kubernetes service account token
-
Service account token is passed to Vault server to retrieve a client token
-
Client token is used to authenticate and read secrets from Vault
More details about the Docker image used in the Pod is at https://github.com/arun-gupta/vault-kubernetes.
-
The Pod configuration file looks like:
apiVersion: v1 kind: Pod metadata: name: vault-kubernetes spec: containers: - name: vault-kubernetes image: arungupta/vault-kubernetes:latest env: - name: VAULT_ADDR value: http://ec2-54-237-223-40.compute-1.amazonaws.com:8200 restartPolicy: Never
-
Deploy the Pod:
$ kubectl apply -f templates/pod-vault.yaml pod "vault-kubernetes" created
-
Get the list of Pods:
$ kubectl get pods --show-all NAME READY STATUS RESTARTS AGE vault-kubernetes 0/1 Completed 0 20s
-
Get logs from the completed Pod:
$ kubectl logs vault-kubernetes Connecting to Vault: http://ec2-54-237-223-40.compute-1.amazonaws.com:8200 vault: HelloWorld