-
Notifications
You must be signed in to change notification settings - Fork 1
/
Exprs.py
399 lines (290 loc) · 9.55 KB
/
Exprs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
''' The following classes establish the base concepts
from which complete grammars for arithmetic and boolean
expressions will be defined. Moreover, exceptions are
also defined to ensure correct creation of the expressions.'''
class AExpr:
pass
class AExpr_Exception(Exception):
pass
class BExpr:
pass
class BExpr_Exception(Exception):
pass
''' The following classes represent the various
constructs of arithmetic expressions. '''
class AEVar(AExpr):
''' Class that represents an integer variable '''
def __init__(self,n):
if not(type(n) == str):
raise AExpr_Exception
self.__name = n
def name(self):
return self.__name
def __eq__(self,other):
match other:
case AEVar():
return (self.__name == other.name())
case _:
return False
def __str__(self):
return str(self.__name)
class AEVal(AExpr):
''' Class that represents an integer value '''
def __init__(self,v):
if not(type(v) == int):
raise AExpr_Exception
self.__value = v
def value(self):
return self.__value
def __eq__(self,other):
match other:
case AEVal():
return (self.__value == other.value())
case _:
return False
def __str__(self):
return str(self.__value)
class AEPlus(AExpr):
''' Class that represents the sum of two
arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise AExpr_Exception
self.__rnode = r
self.__lnode = l
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case AEPlus():
return (self.__lnode == other.left() and self.__rnode == other.right())
def __str__(self):
return '('+str(self.__lnode)+'+'+str(self.__rnode)+')'
class AEMinus(AExpr):
''' Class that represents the subtraction
of two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise AExpr_Exception
self.__rnode = r
self.__lnode = l
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case AEMinus():
return (self.__lnode == other.left() and self.__rnode == other.right())
def __str__(self):
return '('+str(self.__lnode)+'-'+str(self.__rnode)+')'
class AEMult(AExpr):
''' Class that represents the multiplication
of two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise AExpr_Exception
self.__rnode = r
self.__lnode = l
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case AEMult():
return (self.__lnode == other.left() and self.__rnode == other.right())
def __str__(self):
return '('+str(self.__lnode)+'*'+str(self.__rnode)+')'
class AEPow(AExpr):
''' Build the power of an expression [e] up to an
integer [n].'''
def __init__(self,e,i):
if not (isinstance(e,AExpr) or isinstance(i,AExpr)):
raise AExpr_Exception
self.__base = e
self.__exp = i
def base(self):
return self.__base
def exp(self):
return self.__exp
def __eq__(self,other):
match other:
case AEPow():
return (self.__base == other.base() and self.__exp == other.exp())
def __str__(self):
return str(self.__base)+' ^ '+str(self.__exp)
''' The following classes represent the various
constructs of Boolean expressions. '''
class BEVal(BExpr):
def __init__(self,v):
if not(type(v) == bool):
raise BExpr_Exception
self.__val = v
def value(self):
return self.__val
def __eq__(self,other):
match other:
case BEVal():
return self.__val == other.value()
case _:
return False
def __str__(self):
return str(self.__val)
class BENeg(BExpr):
def __init__(self,be):
if not isinstance(be,BExpr):
raise BExpr_Exception
self.__inner = be
def inner(self):
return self.__inner
def __eq__(self,other):
match other:
case BENeg():
return self.__inner == other.inner()
case _:
return False
def __str__(self):
return "~("+str(self.__inner)+")"
class BEAnd(BExpr):
''' Class that represents the conjunction
of two Boolean expressions.'''
def __init__(self,l,r):
if not (isinstance(l,BExpr) or isinstance(r,BExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BEAnd():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+(u' ⋀ ')+str(self.__rnode)+")"
class BEOr(BExpr):
''' Class that represents the disjunction
of two Boolean expressions.'''
def __init__(self,l,r):
if not (isinstance(l,BExpr) or isinstance(r,BExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BEOr():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+u' ⋁ '+str(self.__rnode)+")"
class BEEq(BExpr):
''' Class that represents the equality
of two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BEEq():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+" == "+str(self.__rnode)+")"
class BELt(BExpr):
''' Class that represents the less than
relation between two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BELt():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+" < "+str(self.__rnode)+")"
class BEGt(BExpr):
''' Class that represents the greater than
relation between two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BEGt():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+" > "+str(self.__rnode)+")"
class BELeq(BExpr):
''' Class that represents the less or equal than
relation between two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BELeq():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+u' ⩽ '+str(self.__rnode)+")"
class BEGeq(BExpr):
''' Class that represents the greater or equal than
relation between two arithmetic expressions.'''
def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):
raise BExpr_Exception
self.__lnode = l
self.__rnode = r
def left(self):
return self.__lnode
def right(self):
return self.__rnode
def __eq__(self,other):
match other:
case BEGeq():
return self.__lnode == other.left() and self.__rnode == other.right()
case _:
return False
def __str__(self):
return "("+str(self.__lnode)+u' ⩾ '+str(self.__rnode)+")"