-
Notifications
You must be signed in to change notification settings - Fork 41
/
circ_mean.m
60 lines (54 loc) · 1.51 KB
/
circ_mean.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function [mu, ul, ll] = circ_mean(alpha, w, dim)
%
% [mu ul ll] = circ_mean(alpha, w, dim)
% Computes the mean direction for circular data.
%
% Input:
% alpha sample of angles in radians
% [w weightings in case of binned angle data]
% [dim compute along this dimension, default: 1st non-singular dimension]
%
% If dim argument is specified, all other optional arguments can be
% left empty: circ_mean(alpha, [], dim)
%
% Output:
% mu mean direction
% ul upper 95% confidence limit
% ll lower 95% confidence limit
%
% PHB 7/6/2008
%
% References:
% Statistical analysis of circular data, N. I. Fisher
% Topics in circular statistics, S. R. Jammalamadaka et al.
% Biostatistical Analysis, J. H. Zar
%
% Circular Statistics Toolbox for Matlab
% By Philipp Berens, 2009
% [email protected] - www.kyb.mpg.de/~berens/circStat.html
if nargin < 3
dim = find(size(alpha) > 1, 1, 'first');
if isempty(dim)
dim = 1;
end
end
if nargin < 2 || isempty(w)
% if no specific weighting has been specified
% assume no binning has taken place
w = ones(size(alpha));
else
if size(w,2) ~= size(alpha,2) || size(w,1) ~= size(alpha,1)
error('Input dimensions do not match');
end
end
% compute weighted sum of cos and sin of angles
r = sum(w.*exp(1i*alpha),dim);
% obtain mean by
mu = angle(r);
% confidence limits if desired
if nargout > 1
t = circ_confmean(alpha,0.05,w,[],dim);
ul = mu + t;
ll = mu - t;
end
end