-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathresidual_model_resdnet.py
126 lines (107 loc) · 4.56 KB
/
residual_model_resdnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.autograd import Variable
import numpy as np
import torch.optim as optim
from torch.nn.utils import weight_norm
import sys, math, l2proj
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=0, bias=True)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, weightnorm=None, shortcut=True):
super(BasicBlock, self).__init__()
self.shortcut = shortcut
self.conv1 = conv3x3(inplanes, planes, stride)
self.relu1 = nn.PReLU(num_parameters=planes,init=0.1)
self.relu2 = nn.PReLU(num_parameters=planes, init=0.1)
self.conv2 = conv3x3(inplanes, planes, stride)
if weightnorm:
self.conv1 = weight_norm(self.conv1)
self.conv2 = weight_norm(self.conv2)
def forward(self, x):
out = self.relu1(x)
out = F.pad(out,(1,1,1,1),'reflect')
out = self.conv1(out)
out = out[:,:, :x.shape[2], :x.shape[3]]
out = self.relu2(out)
out = F.pad(out,(1,1,1,1),'reflect')
out = self.conv2(out)
out = out[:,:, :x.shape[2], :x.shape[3]]
if self.shortcut:
out = x + out
return out
class ResNet_Den(nn.Module):
def __init__(self, block, layer_size, color=True, weightnorm=None):
self.inplanes = 64
super(ResNet_Den, self).__init__()
if color:
in_channels = 3
else:
in_channels = 1
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=5, stride=1, padding=0,
bias=True)
if weightnorm:
self.conv1 = weight_norm(self.conv1)
# inntermediate layer has D-2 depth
self.layer1 = self._make_layer(block, 64, layer_size)
self.conv_out = nn.ConvTranspose2d(64, in_channels, kernel_size=5, stride=1, padding=2,
bias=True)
if weightnorm:
self.conv_out = weight_norm(self.conv_out)
self.l2proj = l2proj.L2Proj()
for m in self.modules():
if isinstance(m, nn.Conv2d):
weights = np.sqrt(2/(9.*64))*np.random.standard_normal(m.weight.data.shape)
#weights = np.random.normal(size=m.weight.data.shape,
# scale=np.sqrt(1. / m.weight.data.shape[1]))
m.weight.data = torch.Tensor(weights)
if m.bias is not None:
m.bias.data.zero_()
self.zeromean()
def _make_layer(self, block, planes, blocks, stride=1):
layers = []
layers.append(block(self.inplanes, planes, stride, weightnorm=True, shortcut=False))
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, weightnorm=True, shortcut=True))
return nn.Sequential(*layers)
def zeromean(self):
# Function zeromean subtracts the mean E(f) from filters f
# in order to create zero mean filters
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data = m.weight.data - torch.mean(m.weight.data)
def forward(self, x, stdn, alpha):
self.zeromean()
out = F.pad(x,(2,2,2,2),'reflect')
out = self.conv1(out)
out = self.layer1(out)
out = self.conv_out(out)
out = self.l2proj(out, stdn, alpha)
return out
if __name__ == "__main__":
#model = Net(D=5).get_model()
#print(BasicBlock(5,5))
model = ResNet_Den(BasicBlock, 5, weightnorm=True).cuda()
parameters_start = [p.clone() for p in model.parameters()]
optimizer = optim.Adam(model.parameters(), lr=0.001)
original = Variable(torch.FloatTensor(np.random.randn(2, 3, 50, 50))).float().cuda()
input = Variable(original.cpu().data + torch.rand(original.shape)*0.1).float().cuda()
criterion = nn.MSELoss()
for i in range(10):
#print(model.conv1.weight.mean().data[0], model.conv2.weight.mean().data[0])
#print(model.conv1.weight.max().data[0], model.conv2.weight.max().data[0])
prediction = model(input.float(), 15)
#print(prediction.shape)
optimizer.zero_grad()
loss = criterion(input - prediction, original)
print(loss.data[0])
loss.backward()
optimizer.step()
#for l1, l2 in zip(parameters_start,list(model.parameters())):
# print(np.array_equal(l1.data.numpy(), l2.data.numpy()))
print("Done.")