forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_metadata.h
166 lines (144 loc) · 4.86 KB
/
input_metadata.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#pragma once
#include <ATen/ExpandUtils.h>
#include <ATen/NestedTensorImpl.h>
#include <ATen/core/Tensor.h>
#include <c10/core/Device.h>
#include <c10/core/DeviceType.h>
#include <c10/core/Stream.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/core/TensorImpl.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
#include <c10/util/DimVector.h>
#include <c10/util/Exception.h>
#include <c10/util/SmallVector.h>
#include <c10/util/variant.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/zeros.h>
#endif
#include <cstdint>
#include <utility>
namespace torch {
namespace autograd {
using SymIntSmallVec = c10::SmallVector<c10::SymInt, c10::kDimVectorStaticSize>;
using MetadataShape = c10::variant<SymIntSmallVec, at::Tensor>;
/**
* Records TensorOptions, shape of the tensor, whether or not the Python
* dispatch key is set (tensor subclass), and, where applicable, the stream the
* corresponding operation took place on.
*
* If is_valid() is false, then the corresponding input is not used and may be
* an undefined tensor.
*/
struct InputMetadata {
InputMetadata() = default;
InputMetadata(
const at::TensorOptions options,
MetadataShape input_shape,
bool is_tensor_subclass)
: options_{options},
shape_{input_shape},
is_tensor_subclass_{is_tensor_subclass} {
auto device_ = options.device();
stream_ = c10::impl::getDeviceGuardImpl(device_.type())->getStream(device_);
}
InputMetadata(const at::Tensor& t)
: InputMetadata(
t.options(),
compute_variant_shape(t),
t.unsafeGetTensorImpl()->is_python_dispatch()) {}
const at::TensorOptions options() const {
return options_;
}
caffe2::TypeMeta dtype() const {
return options_.dtype();
}
at::Device device() const {
return options_.device();
}
at::Layout layout() const {
return options_.layout();
}
c10::Stream stream() const {
return stream_;
}
bool is_tensor_subclass() const {
return is_tensor_subclass_;
}
at::Tensor zeros_like() const {
TORCH_CHECK(
!is_nested_tensor(),
"Zeros is not currently supported for nested tensors.")
return at::zeros_symint(shape_as_dim_vector(), options_);
}
bool is_same_shape(const at::Tensor& grad) const {
TORCH_CHECK(
grad.is_nested() == is_nested_tensor(),
"Both grad and InputMetadata need to be either nested or non nested tensors.")
if (grad.is_nested()) {
return at::native::get_nested_size_tensor(grad).is_same_size(
shape_as_tensor());
}
return grad.sym_sizes().equals(shape_as_dim_vector());
}
bool is_expandable_to_shape(const at::Tensor& grad) const {
// Currently NestedTensors are not expandable. If this support is added then
// updates to reduce_grad will be needed
TORCH_CHECK(
grad.is_nested() == is_nested_tensor(),
"Both grad and InputMetadata need to be either nested or non nested tensors.")
return grad.is_nested()
? false
: at::is_expandable_to(shape_as_dim_vector(), grad.sym_sizes());
}
at::Tensor reduce_grad(at::Tensor& grad) const {
// Currently reduce_grad is only called if is_expandable_to_shape returns
// true For nested tensors this always returns False, so this check
// shouldn't fail
TORCH_INTERNAL_ASSERT(!grad.is_nested() && !is_nested_tensor())
return at::sum_to(std::move(grad), shape_as_dim_vector());
}
std::stringstream incompatible_shape_error_message(
const size_t index,
const at::Tensor& grad) const {
std::stringstream ss;
ss << "invalid gradient at index " << index << " - got ";
if (grad.is_nested()) {
ss << at::native::get_nested_size_tensor(grad);
} else {
ss << grad.sizes();
}
ss << " but expected shape compatible with ";
if (is_nested_tensor()) {
ss << shape_as_tensor();
} else {
ss << c10::asIntArrayRefSlow(shape_as_dim_vector());
}
return ss;
}
private:
bool is_nested_tensor() const {
return (c10::holds_alternative<at::Tensor>(shape_));
}
MetadataShape compute_variant_shape(const at::Tensor& input) {
if (input.is_nested()) {
auto nested_size = at::native::get_nested_size_tensor(input);
return MetadataShape{c10::in_place_type<at::Tensor>, nested_size};
}
return MetadataShape{c10::in_place_type<SymIntSmallVec>, input.sym_sizes()};
}
c10::SymIntArrayRef shape_as_dim_vector() const {
const auto& dim_shape = c10::get<SymIntSmallVec>(shape_);
return c10::SymIntArrayRef(dim_shape.data(), dim_shape.size());
}
at::Tensor shape_as_tensor() const {
return c10::get<at::Tensor>(shape_);
}
const at::TensorOptions options_;
MetadataShape shape_;
c10::Stream stream_ = c10::Stream(c10::Stream::Default::DEFAULT, device());
bool is_tensor_subclass_ = false;
};
} // namespace autograd
} // namespace torch