-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnnl_graph_verbose.py
71 lines (55 loc) · 2.98 KB
/
dnnl_graph_verbose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import os
import pandas as pd
dict_type = {
"dnnl": {
"name": "dnnl_verbose",
"len": 11,
"header": ["dnnl_verbose", "action", "eng", "name", "impl", "prop", "format", "blank1", "blank2", "shape", "time"]
},
"graph": {
"name": "dnnl_graph_verbose",
"len": 9,
"header": ["dnnl_verbose", "name", "eng", "impl", "op", "data", "format", "backend", "time"]
}
}
def preprocess(file, verbose_type, delimiter):
with open(file) as f:
content = f.read().splitlines()
reorders = []
if len(delimiter) == 0:
for i, line in enumerate(content):
if line.startswith(dict_type[verbose_type]["name"]) and len(line.split(',')) == dict_type[verbose_type]["len"]:
# if line.startswith(("dnnl_graph_verbose", "dnnl_verbose")) and len(line.split(',')) == 11:
reorder = line.split(",")
# assert len(reorder) == 11, "Please check the verbose format of:\nOP that leads to the reorder: %s\nThe reorder verbose: %s" % (content[i-1], line)
reorders.append(reorder)
else:
take = False
for i, line in enumerate(content):
if take:
if line.startswith(dict_type[verbose_type]["name"]) and len(line.split(',')) == dict_type[verbose_type]["len"]:
# if line.startswith(("dnnl_graph_verbose", "dnnl_verbose")) and len(line.split(',')) == 11:
reorder = line.split(",")
# assert len(reorder) == 11, "Please check the verbose format of:\nOP that leads to the reorder: %s\nThe reorder verbose: %s" % (content[i-1], line)
reorders.append(reorder)
if line == delimiter:
take = True
df = pd.DataFrame(reorders, columns=dict_type[verbose_type]["header"])
return df
def main(file_name, verbose_type, delimiter):
df = preprocess(file_name, verbose_type, delimiter)
df["time"] = df["time"].astype(float)
# df_groupby_name = df.groupby("name").sum().sort_values(by="time", ascending=False)
df_groupby_name = df.groupby('name')['time'].agg(['sum','count', 'mean'])
df_groupby_name = df_groupby_name.rename(columns={'sum': 'sum (ms)', 'mean': 'mean (ms)'})
print(df_groupby_name)
# df_groupby_name.to_csv(file_name + ".csv")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--file_name", default=None, type=str, required=True, help="path to the input onednn log file")
parser.add_argument("-t", "--verbose_type", default="dnnl", type=str, choices=["dnnl", "graph"] ,required=True, help="dnnl or graph verbose")
parser.add_argument("--delimiter", default="", type=str, required=False, help="trim lines at the beginning of verbose output")
args = parser.parse_args()
df = main(args.file_name, args.verbose_type, args.delimiter)
# python dnnl_graph_summary.py -f bs1_int8_verbose_0.log -t dnnl --delimiter "begin running..............."