It is possible to save any RDD
to Cassandra, not just a CassandraRDD
.
The only requirement is that the object class of RDD
is a tuple or
has property names corresponding to Cassandra column names.
It is possible to save an RDD
to an existing Cassandra table as well
as to let the connector create appropriate table automatically based on
the definition of the RDD
item class.
To save an RDD
to an existing table, import com.datastax.spark.connector._
and call the saveToCassandra
method with the keyspace name, table name
and a list of columns. Make sure to include at least all primary key columns.
To save an RDD
to a new table, instead of calling saveToCassandra
,
call saveAsCassandraTable
or saveAsCassandraTableEx
.
Assume the following table definition:
CREATE TABLE test.words (word text PRIMARY KEY, count int);
val collection = sc.parallelize(Seq(("cat", 30), ("fox", 40)))
collection.saveToCassandra("test", "words", SomeColumns("word", "count"))
cqlsh:test> select * from words;
word | count
------+-------
bar | 20
foo | 10
cat | 30
fox | 40
(4 rows)
By default, Tuple fields will be paired in order with Cassandra Columns but using a custom mapper is also supported with tuples
CREATE TABLE test.words (word text PRIMARY KEY, count int);
val collection = sc.parallelize(Seq((30, "cat"), (40, "fox")))
collection.saveToCassandra("test", "words", SomeColumns("word" as "_2", "count" as "_1"))
cqlsh:test> select * from words;
word | count
------+-------
cat | 30
fox | 40
(2 rows)
When saving a collection of objects of a user-defined class, the items to be saved must provide appropriately named public property accessors for getting every column to be saved. This example provides more information on property-column naming conventions as described here.
case class WordCount(word: String, count: Long)
val collection = sc.parallelize(Seq(WordCount("dog", 50), WordCount("cow", 60)))
collection.saveToCassandra("test", "words", SomeColumns("word", "count"))
cqlsh:test> select * from words;
word | count
------+-------
bar | 20
foo | 10
cat | 30
fox | 40
dog | 50
cow | 60
The driver will execute a CQL INSERT
statement for every object in the RDD
,
grouped in unlogged batches. The default consistency level for writes
is LOCAL_QUORUM
.
It is possible to specify custom column to property mapping with SomeColumns
. If the property
names in objects to be saved do not correspond to the column names in the destination table, use
the as
method on the column names you want to override. The parameter order is table column
name first, then object property name.
Say you want to save WordCount
objects to the table which has columns word TEXT
and num INT
.
case class WordCount(word: String, count: Long)
val collection = sc.parallelize(Seq(WordCount("dog", 50), WordCount("cow", 60)))
collection.saveToCassandra("test", "words2", SomeColumns("word", "num" as "count"))
The default behavior of the Spark Cassandra Connector is to overwrite collections when inserted into a cassandra table. To override this behavior you can specify a custom mapper with instructions on how you would like the collection to be treated.
The following operations are supported
- append/add (lists, sets, maps)
- prepend (lists)
- remove (lists, sets)
- overwrite (lists, sets, maps) :: Default
Remove is not supported for Maps.
These are applied by adding the desired behavior to the ColumnSelector
("key", "a_set" as "rddSetField" remove , "a_map" as "rddMapField" append)
This mapping takes the elements from rddSetField and removes them from corrosponding Cassandra Set "a_set". It also takes elements from "rddMapField" and adds them to the cassandra map "a_map" where the Cassandra column key quals the key field in the RDD elements.
CREATE TABLE ks.collections_mod (
key int PRIMARY KEY,
lcol list<text>,
mcol map<text, text>,
scol set<text>
)
val listElements = sc.parallelize(Seq(
(1,Vector("One")),
(1,Vector("Two")),
(1,Vector("Three"))))
val prependElements = sc.parallelize(Seq(
(1,Vector("PrependOne")),
(1,Vector("PrependTwo")),
(1,Vector("PrependThree"))))
listElements.saveToCassandra("ks", "collections_mod", SomeColumns("key", "lcol" append))
prependElements.saveToCassandra("ks", "collections_mod", SomeColumns("key", "lcol" prepend))
cqlsh> Select * from ks.collections_mod where key = 1
... ;
key | lcol | mcol | scol
-----+---------------------------------------------------------------------+------+------
1 | ['PrependThree', 'PrependTwo', 'PrependOne', 'One', 'Two', 'Three'] | null | null
(1 rows)
To save structures consisting of many fields, use a Case Class or a
com.datastax.spark.connector.UDTValue
class. An instance of this class
can be easily obtained from a Scala Map
by calling fromMap
factory method.
Assume the following table definition:
CREATE TYPE test.address (city text, street text, number int);
CREATE TABLE test.companies (name text PRIMARY KEY, address FROZEN<address>);
case class Address(street: String, city: String, zip: Int)
val address = Address(city = "Oakland", zip = 90210, street = "Broadway")
val col = Seq((1, "Joe", address))
sc.parallelize(col).saveToCassandra(ks, "udts", SomeColumns("key", "name", "addr"))
import com.datastax.spark.connector.UDTValue
case class Company(name: String, address: UDTValue)
val address = UDTValue.fromMap(Map("city" -> "Santa Clara", "street" -> "Freedom Circle", "number" -> 3975))
val company = Company("DataStax", address)
sc.parallelize(Seq(company)).saveToCassandra("test", "companies")
Prior to Cassandra 2.2 there was no way to execute a prepared statement with unbound elements.
This meant every executed statement via the Spark Cassandra Connector was required
to bind nulls
into for any unspecified columns. As of Cassandra 2.2, the native protocol now allows
for leaving parameters unbound.
To take advantage of unset parameters, the Spark Cassandra Connector now provides a method for
taking advantage of this unbound behavior. This is done by with the
com.datastax.spark.connector.types.CassandraOption
trait.
The trait has three implementations
sealed trait CassandraOption[+A] extends Product with Serializable
object CassandraOption {
case class Value[+A](value: A) extends CassandraOption[A]
case object Unset extends CassandraOption[Nothing]
case object Null extends CassandraOption[Nothing]
This can be used when reading and writing from C*. When a column is loaded as a CassandraOption
any missing columns will be represented as Unset
. On writing, these parameters will remain unbound.
This means a table loaded via CassandraOption
can be written to a second table without any missing
column values being treated as deletes.
//cqlsh
CREATE TABLE doc_example.tab1 (key INT, col_1 INT, col_2 INT, PRIMARY KEY (key))
INSERT INTO doc_example.tab1 (key, col_1, col_2) VALUES (1, null, 1)
CREATE TABLE doc_example.tab2 (key INT, col_1 INT, col_2 INT, PRIMARY KEY (key))
INSERT INTO doc_example.tab2 (key, col_1, col_2) VALUES (1, 5, null)
//spark-shell
val ks = "doc_example"
//Copy the data from tab1 to tab2 but don't delete when we see a null in tab1
sc.cassandraTable[(Int, CassandraOption[Int], CassandraOption[Int])](ks, "tab1")
.saveToCassandra(ks, "tab2")
sc.cassandraTable[(Int,Int,Int)](ks, "tab2").collect
//(1, 5, 1)
For more complicated use cases the CassandraOption
can be set to delete on a per row
(and per column) basis. This is done by using either the Unset
or Null
case objects.
//Fill tab1 with (1, 1, 1) , (2, 2, 2) ... (6, 6, 6)
sc.parallelize(1 to 6).map(x => (x, x, x)).saveToCassandra(ks, "tab1")
//Delete the second column when x >= 5
//Delete the third column when x <= 2
//For other rows put in the value -1
sc.parallelize(1 to 6).map(x => x match {
case x if (x >= 5) => (x, CassandraOption.Null, CassandraOption.Unset)
case x if (x <= 2) => (x, CassandraOption.Unset, CassandraOption.Null)
case x => (x, CassandraOption(-1), CassandraOption(-1))
}).saveToCassandra(ks, "tab1")
val results = sc.cassandraTable[(Int, Option[Int], Option[Int])](ks, "tab1").collect
results
/*
(1, Some(1), None),
(2, Some(2), None),
(3, Some(-1), Some(-1)),
(4, Some(-1), Some(-1)),
(5, None, Some(5)),
(6, None, Some(6)))
*/
CassandraOptions can be converted to Scala Options via an implemented implicit. This means that
CassandraOptions can be dealt with as if they were normal Scala Options. For the reverse
transformation, from a Scala Option into a CassandraOption, you need to define the None behavior.
This is done via CassandraOption.deleteIfNone
and CassandraOption.unsetIfNone
import com.datastax.spark.connector.types.CassandraOption
//Setup original data (1, 1, 1) ... (6, 6, 6)
sc.parallelize(1 to 6).map(x => (x,x,x)).saveToCassandra(ks, "tab1")
//Setup options Rdd (1, None, None) (2, None, None) ... (6, None, None)
val optRdd = sc.parallelize(1 to 6)
.map(x => (x, None, None))
//Delete the second column, but ignore the third column
optRdd
.map{ case (x: Int, y: Option[Int], z: Option[Int]) =>
(x, CassandraOption.deleteIfNone(y), CassandraOption.unsetIfNone(z))
}.saveToCassandra(ks, "tab1")
val results = sc.cassandraTable[(Int, Option[Int], Option[Int])](ks, "tab1").collect
results
/*
(1, None, Some(1)),
(2, None, Some(2)),
(3, None, Some(3)),
(4, None, Some(4)),
(5, None, Some(5)),
(6, None, Some(6))
*/
WriteConf also now contains a parameter ignoreNulls
which can be set
via using a SparkConf
key spark.cassandra.output.ignoreNulls
. The
default is false
which will cause null
s to be treated as in previous
versions (being inserted into C* as is). When set to true
all null
s
will be treated as unset
. This can be used with DataFrames to skip
null records and avoid tombstones.
####Example of using ignoreNulls to treat all nulls as Unset
//Setup original data (1, 1, 1) --> (6, 6, 6)
sc.parallelize(1 to 6).map(x => (x, x, x)).saveToCassandra(ks, "tab1")
val ignoreNullsWriteConf = WriteConf.fromSparkConf(sc.getConf).copy(ignoreNulls = true)
//These writes will not delete because we are ignoring nulls
val optRdd = sc.parallelize(1 to 6)
.map(x => (x, None, None))
.saveToCassandra(ks, "tab1", writeConf = ignoreNullsWriteConf)
val results = sc.cassandraTable[(Int, Int, Int)](ks, "tab1").collect
results
/**
(1, 1, 1),
(2, 2, 2),
(3, 3, 3),
(4, 4, 4),
(5, 5, 5),
(6, 6, 6)
**/
By default Spark Cassandra Connector saves the data without explicitly specifying TTL or WRITETIME. But for users who require more flexibility, there are several options for setting WRITETIME and TTL
TTL and WRITETIME options are specified as properties of WriteConf
object, which can be optionally passed to saveToCassandra
method. TTL
and WRITETIME options are specified independently from one another.
When the same value should be used for all the rows, one can use the following syntax:
import com.datastax.spark.connector.writer._
...
rdd.saveToCassandra("test", "tab", writeConf = WriteConf(ttl = TTLOption.constant(100)))
rdd.saveToCassandra("test", "tab", writeConf = WriteConf(timestamp = TimestampOption.constant(ts)))
TTLOption.constant
accepts one of the following values:
Int
/ the number of secondsscala.concurrent.duration.Duration
org.joda.time.Duration
TimestampOption.constant
accepts one of the following values:
Long
/ the number of microsecondsjava.util.Date
org.joda.time.DateTime
When a different value of TTL or WRITETIME has to be used for each row, one can use the following syntax:
import com.datastax.spark.connector.writer._
...
rdd.saveToCassandra("test", "tab", writeConf = WriteConf(ttl = TTLOption.perRow("ttl")))
rdd.saveToCassandra("test", "tab", writeConf = WriteConf(timestamp = TimestampOption.perRow("timestamp")))
perRow(String)
method accepts a name of a property in each RDD item, which value will be used as TTL
or WRITETIME value for the row.
Say we have an RDD with KeyValueWithTTL
objects, defined as follows:
case class KeyValueWithTTL(key: Int, group: Long, value: String, ttl: Int)
val rdd = sc.makeRDD(Seq(
KeyValueWithTTL(1, 1L, "value1", 100),
KeyValueWithTTL(2, 2L, "value2", 200),
KeyValueWithTTL(3, 3L, "value3", 300)))
and a CQL table:
CREATE TABLE IF NOT EXISTS test.tab (
key INT,
group BIGINT,
value TEXT,
PRIMARY KEY (key, group)
)
When we run the following command:
import com.datastax.spark.connector.writer._
...
rdd.saveToCassandra("test", "tab", writeConf = WriteConf(ttl = TTLOption.perRow("ttl")))
the TTL for the 1st row will be 100, TTL for the 2nd row will be 200 and TTL for the 3rd row will be 300.
Spark Cassandra Connector always writes or updates data without checking if they already exist. It is possible to change this behaviour in exchange for performance penalty by the API.
IF NOT EXISTS can be added as a boolean property of WriteConf
object, which can be optionally passed to
saveToCassandra
method:
import com.datastax.spark.connector.writer._
...
rdd.saveToCassandra("test", "tab", writeConf = WriteConf(ifNotExists = true))
Use saveAsCassandraTable
method to automatically create a new table with given name
and save the RDD
into it. The keyspace you're saving to must exist.
The following code will create a new table words_new
in keyspace test
with
columns word
and count
, where word
becomes a primary key:
case class WordCount(word: String, count: Long)
val collection = sc.parallelize(Seq(WordCount("dog", 50), WordCount("cow", 60)))
collection.saveAsCassandraTable("test", "words_new", SomeColumns("word", "count"))
To customize the table definition, call saveAsCassandraTableEx
. The following example
demonstrates how to add another column of int type to the table definition, creating new
table words_new_2
:
import com.datastax.spark.connector.cql.{ColumnDef, RegularColumn, TableDef}
import com.datastax.spark.connector.types.IntType
case class WordCount(word: String, count: Long)
val table1 = TableDef.fromType[WordCount]("test", "words_new")
val table2 = TableDef("test", "words_new_2", table1.partitionKey, table1.clusteringColumns,
table1.regularColumns :+ ColumnDef("additional_column", RegularColumn, IntType))
val collection = sc.parallelize(Seq(WordCount("dog", 50), WordCount("cow", 60)))
collection.saveAsCassandraTableEx(table2, SomeColumns("word", "count"))
To create a table with a custom definition, and define which columns are to be partition and clustering column keys:
import com.datastax.spark.connector.cql.{ColumnDef, RegularColumn, TableDef, ClusteringColumn, PartitionKeyColumn}
import com.datastax.spark.connector.types._
// Define structure for rdd data
case class outData(col1:UUID, col2:UUID, col3: Double, col4:Int)
// Define columns
val p1Col = new ColumnDef("col1",PartitionKeyColumn,UUIDType)
val c1Col = new ColumnDef("col2",ClusteringColumn(0),UUIDType)
val c2Col = new ColumnDef("col3",ClusteringColumn(1),DoubleType)
val rCol = new ColumnDef("col4",RegularColumn,IntType)
// Create table definition
val table = TableDef("test","words",Seq(p1Col),Seq(c1Col, c2Col),Seq(rCol))
// Map rdd into custom data structure and create table
val rddOut = rdd.map(s => outData(s._1, s._2(0), s._2(1), s._3))
rddOut.saveAsCassandraTableEx(table, SomeColumns("col1", "col2", "col3", "col4"))
For a full listing of Write Tuning Parameters see the reference section Write Tuning Parameters