Skip to content

Latest commit

 

History

History
105 lines (82 loc) · 3.43 KB

README.md

File metadata and controls

105 lines (82 loc) · 3.43 KB

OneDM Python library

This Python package is an early work-in-progress to simplify working with One Data Model in Python.

Since OneDM is in early stages, this library intends to follow the progress as best as it can and should hence be considered unstable.

SDF

Currently it supports limited loading and generation of SDF documents.

The Semantic Definition Format (SDF) is a format for domain experts to use in the creation and maintenance of data and interaction models that describe Things, i.e., physical objects that are available for interaction over a network. An SDF specification describes definitions of SDF Objects/SDF Things and their associated interactions (Events, Actions, Properties), as well as the Data types for the information exchanged in those interactions.

This library uses Pydantic to parse, validate, and dump model descriptions. The Pydantic models enforce a stricter validation than the current SDF JSON schema where each data type has its own schema.

You can also validate and coerce input values against your data definitions, as well as generating sdf.Data objects from native Python types!

Examples

Loading an existing SDF document:

from onedm import sdf

loader = sdf.SDFLoader()
loader.load_file("tests/sdf/test.sdf.json")
doc = loader.to_sdf()

doc.info.title        
'Example document for SDF (Semantic Definition Format)'

doc.properties["IntegerProperty"]
# IntegerProperty(label='Example integer', description=None, ref=None, type='integer', sdf_type=None, nullable=False, const=None, default=None, choices=None, unit=None, minimum=-2, maximum=2, exclusive_minimum=None, exclusive_maximum=None, multiple_of=2, observable=True, readable=True, writable=True, sdf_required=None)

doc.data["Integer"].validate_input(3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "onedm\sdf\data.py", line 129, in validate_input
    return super().validate_input(input)
           ^^^^^^^^^^^^^^^^^^^^^^^
  File "onedm\sdf\data.py", line 64, in validate_input
    return SchemaValidator(self.get_pydantic_schema()).validate_python(input)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pydantic_core._pydantic_core.ValidationError: 1 validation error for constrained-int
  Input should be a multiple of 2 [type=multiple_of, input_value=3, input_type=int]
    For further information visit https://errors.pydantic.dev/2.8/v/multiple_of

Creating a new document:

from onedm import sdf

doc = sdf.Document()

doc.info.title = "Generic switch document"
doc.things["switch"] = sdf.Thing(label="Generic switch")
doc.things["switch"].actions["on"] = sdf.Action(label="Turn on")
doc.things["switch"].properties["state"] = sdf.BooleanProperty()
print(doc.to_json())
"""
{
  "info": {
    "title": "Generic switch document"
  },
{
  "sdfThing": {
    "switch": {
      "label": "Generic switch",
      "sdfProperty": {
        "state": {
          "type": "boolean"
        }
      },
      "sdfAction": {
        "on": {
          "label": "Turn on"
        }
      }
    }
  }
}
"""

Generating SDF data descriptions from many native Python types:

from onedm.sdf.from_type import data_from_type

data_from_type(bool | None) 
# BooleanData(label=None, description=None, ref=None, type='boolean', sdf_type=None, nullable=True, const=None, default=None, choices=None)