forked from soyeonm/FILM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arguments.py
474 lines (387 loc) · 22.5 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import argparse
import math
import torch
import copy
def get_args():
parser = argparse.ArgumentParser(description='Active-Neural-SLAM')
parser.add_argument('--aithor', type=int, default=0)
parser.add_argument('--alfred', type=int, default=0)
## General Arguments
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--auto_gpu_config', type=int, default=1)
parser.add_argument('--total_num_scenes', type=str, default="auto")
parser.add_argument('-n', '--num_processes', type=int, default=4,
help="""how many training processes to use (default:4)
Overridden when auto_gpu_config=1
and training on gpus """)
parser.add_argument('--num_processes_per_gpu', type=int, default=11)
parser.add_argument('--num_processes_on_first_gpu', type=int, default=0)
parser.add_argument('--num_training_frames', type=int, default=10000000,
help='total number of training frames (default: 1000000)')
parser.add_argument('--num_episodes', type=int, default=1000000,
help='number of training episodes (default: 1000000)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--eval', type=int, default=0,
help='0: Train, 1: Evaluate (default: 0)')
# Logging, loading models, visualization
parser.add_argument('--log_interval', type=int, default=10,
help="""log interval, one log per n updates
(default: 10) """)
parser.add_argument('--save_interval', type=int, default=1,
help="""save interval""")
parser.add_argument('--exp_name', type=str, default="exp1",
help='experiment name (default: exp1)')
parser.add_argument('--save_periodic', type=int, default=500000,
help='Model save frequency in number of updates')
parser.add_argument('--load', type=str, default="0",
help="""model path to load,
0 to not reload (default: 0)""")
parser.add_argument('-v', '--visualize', type=int, default=0,
help='1:Render the frame (default: 0)')
parser.add_argument('--print_images', type=int, default=0,
help='1: save visualization as images')
# Environment, dataset and episode specifications
parser.add_argument('-efw', '--env_frame_width', type=int, default=640,
help='Frame width (default:84)')
parser.add_argument('-efh', '--env_frame_height', type=int, default=480,
help='Frame height (default:84)')
parser.add_argument('-fw', '--frame_width', type=int, default=160,
help='Frame width (default:84)')
parser.add_argument('-fh', '--frame_height', type=int, default=120,
help='Frame height (default:84)')
parser.add_argument('-el', '--max_episode_length', type=int, default=500,
help="""Maximum episode length""")
parser.add_argument("--sim_gpu_id", type=int, default=0,
help="gpu id on which scenes are loaded")
parser.add_argument("--sem_gpu_id", type=int, default=-1,
help="gpu id for semantic model, -1: same as sim gpu, -2: cpu")
parser.add_argument("--task_config", type=str,
default="tasks/objectnav_gibson.yaml",
help="path to config yaml containing task information")
parser.add_argument("--split", type=str, default="train",
help="dataset split (train | val | val_mini) ")
parser.add_argument('-na', '--noisy_actions', type=int, default=0)
parser.add_argument('-no', '--noisy_odometry', type=int, default=0)
parser.add_argument('--camera_height', type=float, default=1.55,
help="agent camera height in metres")
parser.add_argument('--hfov', type=float, default=60.0,
help="horizontal field of view in degrees")
parser.add_argument('--randomize_env_every', type=int, default=0,
help="randomize scene in a thread every k episodes")
## Model Hyperparameters
parser.add_argument('--agent', type=str, default="sem_exp")
parser.add_argument('--global_lr', type=float, default=2.5e-5,
help='global learning rate (default: 2.5e-5)')
parser.add_argument('--global_hidden_size', type=int, default=256,
help='local_hidden_size')
parser.add_argument('--eps', type=float, default=1e-5,
help='RL Optimizer epsilon (default: 1e-5)')
parser.add_argument('--alpha', type=float, default=0.99,
help='RL Optimizer alpha (default: 0.99)')
parser.add_argument('--gamma', type=float, default=0.99,
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--use_gae', action='store_true', default=False,
help='use generalized advantage estimation')
parser.add_argument('--tau', type=float, default=0.95,
help='gae parameter (default: 0.95)')
parser.add_argument('--entropy_coef', type=float, default=0.001,
help='entropy term coefficient (default: 0.01)')
parser.add_argument('--value_loss_coef', type=float, default=0.5,
help='value loss coefficient (default: 0.5)')
parser.add_argument('--max_grad_norm', type=float, default=0.5,
help='max norm of gradients (default: 0.5)')
parser.add_argument('--num_global_steps', type=int, default=20,
help='number of forward steps in A2C (default: 5)')
parser.add_argument('--ppo_epoch', type=int, default=4,
help='number of ppo epochs (default: 4)')
parser.add_argument('--num_mini_batch', type=str, default="auto",
help='number of batches for ppo (default: 32)')
parser.add_argument('--clip_param', type=float, default=0.2,
help='ppo clip parameter (default: 0.2)')
parser.add_argument('--use_recurrent_global', type=int, default=0,
help='use a recurrent global policy')
parser.add_argument('--num_local_steps', type=int, default=25,
help="""Number of steps the local policy
between each global step""")
# Mapping
parser.add_argument('--global_downscaling', type=int, default=1)
parser.add_argument('--vision_range', type=int, default=100)
parser.add_argument('--map_resolution', type=int, default=5)
parser.add_argument('--du_scale', type=int, default=1)
parser.add_argument('--map_size_cm', type=int, default=1200)
parser.add_argument('--cat_pred_threshold', type=float, default=5.0)
parser.add_argument('--map_pred_threshold', type=float, default=1.0)
parser.add_argument('--exp_pred_threshold', type=float, default=1.0)
parser.add_argument('--collision_threshold', type=float, default=0.20)
# New args
parser.add_argument('--print_time', type=int, default=0)
parser.add_argument('--debug', type=int, default=0)
parser.add_argument('--turn_angle', type=float, default=30)
parser.add_argument('--min_depth', type=float, default=0.5)
parser.add_argument('--max_depth', type=float, default=5.0)
# for semantic prediction
parser.add_argument('--sem_pred_prob_thr', type=float, default=0.9)
parser.add_argument('--num_sem_categories', type=float, default=16)
parser.add_argument('--num_episodes_per_scene', type=int, default=200)
parser.add_argument('--min_d', type=float, default=1.5,
help="min distance to goal during training in meters")
parser.add_argument('--max_d', type=float, default=100.0,
help="max distance to goal during training in meters")
parser.add_argument('--success_dist', type=float, default=1.0)
parser.add_argument('--floor_thr', type=int, default=50,
help="floor_thr in cm")
parser.add_argument('--version', type=str, default="v1.1")
###############
## Arguments from ALFRED (no duplicate with OGN arguments)
###############
# settings
parser.add_argument('--splits', type=str, default="alfred_data_small/splits/oct21.json")
parser.add_argument('--data', type=str, default="alfred_data_small/json_2.1.0")
parser.add_argument('--eval_split', type=str, default='valid_seen', choices=['train', 'valid_seen', 'valid_unseen', 'tests_unseen', 'tests_seen'])
parser.add_argument('--model_path', type=str, default="model.pth")
parser.add_argument('--model', type=str, default='models.model.seq2seq_im_mask')
parser.add_argument('--preprocess', dest='preprocess', action='store_true')
parser.add_argument('--shuffle', dest='shuffle', action='store_true')
parser.add_argument('--gpu', dest='gpu', action='store_true')
parser.add_argument('--num_threads', type=int, default=1)
parser.add_argument("--reward_config", type=str, default="models/config/reward.json")
# eval params
parser.add_argument('--max_steps', type=int, default=1000, help='max steps before episode termination')
parser.add_argument('--max_fails', type=int, default=10, help='max API execution failures before episode termination')
# eval settings
parser.add_argument('--subgoals', type=str, help="subgoals to evaluate independently, eg:all or GotoLocation,PickupObject...", default="")
parser.add_argument('--smooth_nav', dest='smooth_nav', action='store_true', help='smooth nav actions (might be required based on training data)')
parser.add_argument('--skip_model_unroll_with_expert', action='store_true', help='forward model with expert actions')
parser.add_argument('--no_teacher_force_unroll_with_expert', action='store_true', help='no teacher forcing with expert')
# debug
parser.add_argument('--debug_alfred', dest='debug_alfred', action='store_true')
parser.add_argument('--fast_epoch', dest='fast_epoch', action='store_true')
parser.add_argument('--gts', dest='ground_truth_segmentation', action='store_true')
parser.add_argument('--learned_depth', dest='use_learned_depth', action='store_true')
parser.add_argument('--valts_depth', dest='valts_depth', action='store_true')
parser.add_argument('--depth_checkpoint_path', type=str, default="real_test_ogn/lr1e-5/model-48000-best_d1_0.88987")
parser.add_argument('--focal', type=float) #one of 518 or 259
parser.add_argument('--depth_gpu', type=int)
parser.add_argument('--ignore_cats', dest='ignore_categories', action='store_true')
parser.add_argument('--wait_time', type=float, default=0)
parser.add_argument('--scene', type=str, default='vase')
parser.add_argument('--look_up_down', type=str, default="Down") #'Up' or 'Down'
parser.add_argument('--view_angle', type=float, default=0) #look up or down angle
parser.add_argument('--agent_height_change', type=float, default=0) #decrease or increase agent height
parser.add_argument('--top_thirty', dest='top_thirty', action='store_true')
parser.add_argument('--no_common_objs', dest='no_common_objs', action='store_true')
parser.add_argument('--which_gpu', type=str)
parser.add_argument('--dgx', dest='dgx', action='store_true')
parser.add_argument('--matrix', dest='matrix', action='store_true')
parser.add_argument('--from_idx', type=int, default=0)
parser.add_argument('--to_idx', type=int, default=821)
parser.add_argument('--x_display', type=str, default='7')
parser.add_argument('--docker', dest='docker', action='store_true')
parser.add_argument('--test', dest='test', action='store_true')
parser.add_argument('--test_seen', dest='test_seen', action='store_true')
parser.add_argument('--leaderboard', dest='leaderboard', action='store_true')
parser.add_argument('--debug_max_steps', dest='debug_max_steps', action='store_true')
parser.add_argument('--tomato', dest='tomato', action='store_true')
parser.add_argument('--no_look_down', dest='no_look_down', action='store_true')
parser.add_argument('--apple', dest='apple', action='store_true')
parser.add_argument('--debug_local', dest='debug_local', action='store_true')
parser.add_argument('--save_pictures', dest='save_pictures', action='store_true')
parser.add_argument('--save_training_pictures', dest='save_training_pictures', action='store_true')
parser.add_argument('--exclude_list', type=str, default="")
parser.add_argument('--load_cuda_goals', dest='load_cuda_goals', action='store_true')
parser.add_argument('--save_cuda_goals', dest='save_cuda_goals', action='store_true')
parser.add_argument('--collision_map_delete', action="store_true")
parser.add_argument('--check_before_sidestep', action="store_true")
parser.add_argument('--check_before_movebehind', action="store_true")
parser.add_argument('--dilation_agent_body', action="store_true")
parser.add_argument('--dilation_five', action="store_true")
parser.add_argument('--disk_dilation', action="store_true")
parser.add_argument('--selem_square', action="store_true")
parser.add_argument('--ori_dist', action="store_true")
parser.add_argument('--broken_new', action="store_true")
parser.add_argument('--no_traversible_check', action="store_true")
parser.add_argument('--save_this_outputted', action="store_true")
parser.add_argument('--save_10_failures', action="store_true")
parser.add_argument('--nonsliced', action="store_true")
parser.add_argument('--visibility', action="store_true")
parser.add_argument('--previous_target', action="store_true")
parser.add_argument('--temp_largest_area', action="store_true")
parser.add_argument('--use_temp', action="store_true")
parser.add_argument('--use_sem_seg', action="store_true")
parser.add_argument('--sem_seg_threshold_large', type=float, default=0.8)
parser.add_argument('--sem_seg_threshold_small', type=float, default=0.8)
parser.add_argument('--sem_seg_gpu', type=int, default=0)
parser.add_argument('--alfworld_mrcnn', action="store_true")
parser.add_argument('--alfworld_both', action="store_true")
parser.add_argument('--flip_rgb', dest='flip_rgb', action='store_true')
parser.add_argument('--alfworld_old_mrcnn', action='store_true')
parser.add_argument('--map_mask_prop',type=float,default=1)
parser.add_argument('--delete_from_map_after_move_until_visible',action='store_true')
parser.add_argument('--with_mask_above_05',action='store_true')
parser.add_argument('--set_dn',type=str, default="")
parser.add_argument('--no_caution_pointers',action='store_true')
parser.add_argument('--no_pickup_update',action='store_true')
parser.add_argument('--obstacle_selem',type=int, default=3)
parser.add_argument('--valts_trustworthy',action='store_true')
parser.add_argument('--valts_trustworthy_prop',type=float, default=1.0)
parser.add_argument('--valts_trustworthy_obj_prop',type=float, default=1.0)
parser.add_argument('--valts_trustworthy_obj_prop0',type=float, default=1.0)
parser.add_argument('--no_straight_obs',action='store_true')
parser.add_argument('--depth_model_old',action='store_true')
parser.add_argument('--depth_model_45_only',action='store_true')
parser.add_argument('--separate_depth_for_straight',action='store_true')
parser.add_argument('--no_depth_mask_interaction',action='store_true')
parser.add_argument('--learned_visibility',action='store_true')
parser.add_argument('--learned_visibility_no_mask',action='store_true')
parser.add_argument('--appended',action='store_true')
parser.add_argument('--approx_last_action_success',action='store_true')
parser.add_argument('--approx_error_message',action='store_true')
parser.add_argument('--approx_horizon',action='store_true')
parser.add_argument('--approx_pose',action='store_true')
parser.add_argument('--use_sem_policy',action='store_true')
parser.add_argument('--explore_prob',type=float, default=0.0)
parser.add_argument('--step_size',type=int, default=5)
parser.add_argument('--side_step_step_size',type=int, default=5)
parser.add_argument('--no_look_down_90',action='store_true')
parser.add_argument('--sidestep_width',type=int, default=4)
parser.add_argument('--behind_step_width',type=int, default=5)
parser.add_argument('--look_no_repeat',action='store_true')
parser.add_argument('--stop_cond',type=float, default=0.55)
parser.add_argument('--stricter_visibility',type=float, default=2.0)
parser.add_argument('--bathtubbasin_visibe_dist',type=float, default=1.5)
parser.add_argument('--dil_coeff',type=float, default=1.0)
parser.add_argument('--valid_learned_lang',action='store_true')
parser.add_argument('--no_delete_lamp',action='store_true')
parser.add_argument('--no_block',action='store_true')
parser.add_argument('--no_rotate_sidestep',action='store_true')
parser.add_argument('--no_opp_sidestep',action='store_true')
parser.add_argument('--no_pickup',action='store_true')
# parse arguments
args = parser.parse_args()
#Add arguments that just have to be added anyways automatically
args.agent = 'sem_exp'
args.split = 'val'
args.version = 'v1.1'
args.eval = 1
args.alfred = 1
args.ground_truth_segmentation = True
args.ignore_categories = True
args.no_common_objs = True
args.matrix = True
args.leaderboard = True
args.print_images = 1
args.focal = 259
args.broken_new = True
args.no_traversible_check = True
args.visibility = True
args.flip_rgb = True
args.approx_pose = True
args.approx_horizon =True
args.approx_error_message = True
args.approx_last_action_success = True
args.no_look_down_90 = True
args.look_no_repeat = True
args.sidestep_width = 0
args.side_step_step_size = 3
args.check_before_sidestep = True
args.stricter_visibility = 1.5
args.obstacle_selem = 4
args.selem_square = True
args.delete_from_map_after_move_until_visible = True
if args.use_learned_depth:
args.map_pred_threshold = 65
args.no_pickup_update = True
args.cat_pred_threshold = 10
args.valts_depth = True
args.valts_trustworthy = True
args.valts_trustworthy_prop = 0.9
args.valts_trustworthy_obj_prop0 = 1.0
args.valts_trustworthy_obj_prop = 1.0
args.learned_visibility = True
args.learned_visibility_no_mask = True
args.separate_depth_for_straight = True
if args.use_sem_seg:
args.with_mask_above_05 = True
args.sem_seg_threshold_small = 0.8
args.sem_seg_threshold_large = 0.8
args.alfworld_mrcnn = True
args.alfworld_both = True
if args.use_sem_policy:
args.explore_prob = 0.0
else:
args.explore_prob = 1.0
args.no_straight_obs = True
num_proc = copy.deepcopy(args.num_processes)
if args.eval_split in ['tests_seen', 'tests_unseen']:
args.test =True
if args.eval_split == 'tests_seen':
args.test_seen = True
if args.eval_split in ['valid_seen', 'valid_unseen']:
args.valid_learned_lang = True
if args.alfred == 1:
args.env_frame_width = 300
args.env_frame_height = 300
args.frame_width = 150
args.frame_height = 150
args.num_sem_categories = 1 + 1 + 1+ 5*args.num_processes
if args.use_sem_policy:
args.num_sem_categories = args.num_sem_categories + 23
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
if args.auto_gpu_config:
num_gpus = torch.cuda.device_count()
if args.total_num_scenes != "auto":
args.total_num_scenes = int(args.total_num_scenes)
elif "objectnav_gibson" in args.task_config and \
"train" in args.split:
args.total_num_scenes = 25
elif "objectnav_gibson" in args.task_config and \
"val" in args.split:
args.total_num_scenes = 5
else:
assert False, "Unknown task config, please specify" + \
" total_num_scenes"
# Automatically configure number of training threads based on
# number of GPUs available and GPU memory size
total_num_scenes = args.total_num_scenes
gpu_memory = 1000
for i in range(num_gpus):
gpu_memory = min(gpu_memory,
torch.cuda.get_device_properties(i).total_memory \
/1024/1024/1024)
if i==0:
assert torch.cuda.get_device_properties(i).total_memory \
/1024/1024/1024 > 10.6, "Insufficient GPU memory"
num_processes_per_gpu = int(gpu_memory/2.6)
num_processes_on_first_gpu = int((gpu_memory - 10.6)/2.6)
if num_gpus == 1:
args.num_processes_on_first_gpu = num_processes_on_first_gpu
args.num_processes_per_gpu = 0
args.num_processes = num_processes_on_first_gpu
else:
num_processes_on_first_gpu = 0
num_threads = num_processes_per_gpu * (num_gpus - 1) \
+ num_processes_on_first_gpu
num_threads = min(num_threads, args.total_num_scenes)
args.num_processes_per_gpu = min(num_processes_per_gpu,
math.ceil(num_threads//(num_gpus-1)))
args.num_processes_on_first_gpu = max(0,
num_threads - args.num_processes_per_gpu*(num_gpus - 1))
args.num_processes = num_threads
args.sim_gpu_id = 1
print("Auto GPU config:")
print("Number of processes: {}".format(args.num_processes))
print("Number of processes on GPU 0: {}".format(
args.num_processes_on_first_gpu))
print("Number of processes per GPU: {}".format(
args.num_processes_per_gpu))
else:
args.sem_gpu_id = -2
if args.num_mini_batch == "auto":
args.num_mini_batch = max(args.num_processes // 2, 1)
else:
args.num_mini_batch = int(args.num_mini_batch)
args.num_processes = num_proc
return args