diff --git a/README.md b/README.md index 3090eef..68f64f9 100644 --- a/README.md +++ b/README.md @@ -5,8 +5,9 @@ This repository contains the accompanying code for [4D-SpatioTemporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19](https://arxiv.org/abs/1904.08755). -## Change Logs +## Change Log +- 2020-05-19 The latest Minkowski Engine since the commit [be5c3](https://github.com/StanfordVL/MinkowskiEngine/commit/be5c3c18b26d6a62380d613533b7a939a5458705), does not require explicit cache clear and can use the memory more efficiently. - 2020-05-04: As pointed out by Thomas Chaton on [Issue#30](https://github.com/chrischoy/SpatioTemporalSegmentation/issues/30), I also found out that the training script contains bugs that models cannot reach the target performance described in the Model Zoo with the latest MinkowskiEngine. I am in the process of debugging the bugs, but I am having some difficulty finding the bugs. So, I created another git repo [SpatioTemporalSegmentation-ScanNet](https://github.com/chrischoy/SpatioTemporalSegmentation-ScanNet) from my other private repo that reaches the target performance. Please refer to the [SpatioTemporalSegmentation-ScanNet](https://github.com/chrischoy/SpatioTemporalSegmentation-ScanNet) for the ScanNet training. I'll update this repo once I find the bugs and merge SpatioTemporalSegmentation-ScanNet with this repo. Sorry for the trouble. ## Requirements diff --git a/lib/train.py b/lib/train.py index fe74ece..6b28b71 100644 --- a/lib/train.py +++ b/lib/train.py @@ -80,7 +80,7 @@ def train(model, data_loader, val_data_loader, config, transform_data_fn=None): # Preprocess input color = input[:, :3].int() if config.normalize_color: - input[:, 1:] = input[:, 1:] / 255. - 0.5 + input[:, :3] = input[:, :3] / 255. - 0.5 sinput = SparseTensor(input, coords).to(device) data_time += data_timer.toc(False) @@ -150,10 +150,6 @@ def train(model, data_loader, val_data_loader, config, transform_data_fn=None): # Recover back model.train() - if curr_iter % config.empty_cache_freq == 0: - # Clear cache - torch.cuda.empty_cache() - # End of iteration curr_iter += 1