-
Notifications
You must be signed in to change notification settings - Fork 0
/
svdtall.h
108 lines (85 loc) · 2.66 KB
/
svdtall.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#pragma once
#include <Eigen/Core>
#include <Eigen/Eigen>
#include "data.h"
using namespace Eigen;
class SVDTall
{
private:
const MatrixXd& mat;
const unsigned int n;
bool verbose;
unsigned int nops;
public:
SVDTall(const MatrixXd& mat_, bool verbose_=false):
mat(mat_), n(mat_.rows())
{
verbose = verbose_;
nops = 1;
};
inline unsigned int rows() const { return n; }
inline unsigned int cols() const { return n; }
void perform_op(double *x_in, double* y_out);
};
class SVDTallOnline
{
public:
// Trace of X X'
double trace;
private:
Data& dat;
const unsigned int n, p;
unsigned int nblocks;
unsigned int *start, *stop;
int stand_method;
bool verbose;
unsigned int nops;
unsigned int block_size;
bool trace_done;
public:
SVDTallOnline(Data& dat_, unsigned int block_size_, int stand_method_,
bool verbose_): dat(dat_), n(dat_.N), p(dat_.nsnps)
{
verbose = verbose_;
block_size = block_size_;
stand_method = stand_method_;
nblocks = (unsigned int)ceil((double)p / block_size);
verbose && STDOUT << timestamp()
<< "Using blocksize " << block_size << ", " <<
nblocks << " blocks"<< std::endl;
start = new unsigned int[nblocks];
stop = new unsigned int[nblocks];
for(unsigned int i = 0 ; i < nblocks ; i++)
{
start[i] = i * block_size;
stop[i] = start[i] + block_size - 1;
stop[i] = stop[i] >= p ? p - 1 : stop[i];
}
nops = 1;
trace = 0;
trace_done = false;
};
~SVDTallOnline();
inline unsigned int rows() const { return n; }
inline unsigned int cols() const { return n; }
// y = X X' * x
void perform_op(double *x_in, double* y_out);
// y = X X' * x
MatrixXd perform_op_mat(const MatrixXd x);
// Like R crossprod(): y = X' * x
// Note: size of x must be number of samples, size y must be number of SNPs
void crossprod(double *x_in, double *y_out);
// Like R crossprod(): y = X' * x
// Note: size of x must be number of samples, size y must number of SNPs
MatrixXd crossprod2(const MatrixXd& x);
// Like y = X %*% x
// Note: size of x must be number of SNPs,
// size of y must be the number of samples
void prod(double *x_in, double *y_out);
// return Y = X * X' * x where x is a matrix (despite x being lower case)
MatrixXd perform_op_multi(const MatrixXd& x);
// Like Y = x' * X, where X is genotypes, x is a matrix
MatrixXd prod2(const MatrixXd& x);
// Like Y = X * x, where X is genotypes, x is a matrix
MatrixXd prod3(const MatrixXd& x);
};