-
Notifications
You must be signed in to change notification settings - Fork 27
/
train_ae.py
373 lines (262 loc) · 11.4 KB
/
train_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# ---
# jupyter:
# jupytext:
# cell_metadata_json: true
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.4.1
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# +
# https://github.com/jvanvugt/pytorch-unet
print('STARTING AUTOENCODER TRAINING SCRIPT', flush=True)
import argparse
import os
import traceback
import sys
import torch
from torch import nn
from torch.utils.data import DataLoader
from albumentations import *
from albumentations.pytorch import ToTensor
from unet import UNet
import cv2
import numpy as np
import glob
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import time
import math
from QA_utils import get_torch_device
# -
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent+.00001)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
class LayerActivations():
features=None
def __init__(self,layer):
self.hook = layer.register_forward_hook(self.hook_fn)
def hook_fn(self,module,input,output):
self.features = output
def remove(self):
self.hook.remove()
class Dataset(object):
def __init__(self, fnames,transform=None, maximgs=-1):
self.fnames=fnames
self.transform=transform
self.maximgs = min(maximgs,len(self.fnames))
def __getitem__(self, index):
index = index if self.maximgs==-1 else np.random.randint(0,self.maximgs)
fname=self.fnames[index]
image = cv2.cvtColor(cv2.imread(fname), cv2.COLOR_BGR2RGB)
patch = image
if self.transform is not None:
patch1 = self.transform(image=image)['image']
patch2 = self.transform(image=image)['image']
return patch1,patch2, image
def __len__(self):
return len(self.fnames) if self.maximgs==-1 else self.maximgs
# +
try:
parser = argparse.ArgumentParser(description='Train AutoEncoder')
parser.add_argument('input_pattern', type=str)
parser.add_argument('-p', '--patchsize', help="patchsize, default 256", default=256, type=int)
parser.add_argument('-n', '--numepochs', help="", default=150, type=int)
parser.add_argument('-s', '--numearlystopepochs', help="Number of epochs to stop early if no validation progress has been made", default=-1, type=int)
parser.add_argument('-l', '--numminepochs',help="Minimum number of epochs required before early stopping, default 300", default=300, type=int)
parser.add_argument('-m', '--numimgs', help="Number of images to use per epoch, default is-1, implying all", default=-1, type=int)
parser.add_argument('-b', '--batchsize', help="", default=8, type=int)
parser.add_argument('-r', '--numworkers', help="number of data loader workers to use, NOTE: must be 0 for windows", default=0, type=int)
parser.add_argument('-i', '--gpuid', help="GPU ID, set to -2 to use CPU", default=0, type=int)
parser.add_argument('-o', '--outdir', help="", default="./", type=str)
#args = parser.parse_args(['-o./projects/ajtest/models/0', './projects/ajtest/patches/*.png'])
#args = parser.parse_args(['-n100', '-m-1', '-b32', '-o./projects/ajtest/models/0', './projects/ajtest/patches/*.png'])
print("Parsing arguments:", flush=True)
args = parser.parse_args()
print(f"args: {args}")
print(f"Making directory {args.outdir}:", flush=True)
os.makedirs(args.outdir, exist_ok=True)
print(f'USER: Starting Training of base model', flush=True)
input_pattern = args.input_pattern
patch_size = args.patchsize
num_imgs = args.numimgs
batch_size = args.batchsize
num_epochs = args.numepochs
num_epochs_earlystop = args.numearlystopepochs if args.numearlystopepochs > 0 else float("inf")
num_min_epochs = args.numminepochs
if os.name =="nt":
numworkers = 0
else:
numworkers = args.numworkers if args.numworkers!=-1 else os.cpu_count()
n_classes= 3
in_channels= 3
padding= True
depth= 5
wf= 2
up_mode= 'upsample'
batch_norm = True
print("Getting torch device:", flush=True)
device = get_torch_device()
print("Initializing model:", flush=True)
model = UNet(n_classes=n_classes, in_channels=in_channels, padding=padding,
depth=depth,wf=wf, up_mode=up_mode, batch_norm=batch_norm , concat=True).to(device)
print(f"total params: \t{sum([np.prod(p.size()) for p in model.parameters()])}", flush=True)
# from torchsummary import summary
# summary(model,(3,256,256))
dr=LayerActivations(model.down_path[-1].block[5])
# +
img_transform = Compose([
RandomScale(scale_limit=0.1,p=.9),
PadIfNeeded(min_height=patch_size,min_width=patch_size),
VerticalFlip(p=.5),
HorizontalFlip(p=.5),
Blur(p=.5),
#Downscale(p=.25, scale_min=0.64, scale_max=0.99),
GaussNoise(p=.5, var_limit=(10.0, 50.0)),
GridDistortion(p=.5, num_steps=5, distort_limit=(-0.3, 0.3),
border_mode=cv2.BORDER_REFLECT),
ISONoise(p=.5, intensity=(0.1, 0.5), color_shift=(0.01, 0.05)),
RandomBrightness(p=.5, limit=(-0.2, 0.2)),
RandomContrast(p=.5, limit=(-0.2, 0.2)),
RandomGamma(p=.5, gamma_limit=(80, 120), eps=1e-07),
MultiplicativeNoise(p=.5, multiplier=(0.9, 1.1), per_channel=True, elementwise=True),
HueSaturationValue(hue_shift_limit=20,sat_shift_limit=10,val_shift_limit=10,p=.9),
Rotate(p=1, border_mode=cv2.BORDER_REFLECT),
RandomCrop(patch_size,patch_size),
ToTensor()
])
print(f"Getting training data for pattern {input_pattern}:", flush=True)
data_train=Dataset(glob.glob(input_pattern), transform=img_transform, maximgs=num_imgs) #img_transform)
print(f"Creating loader for training data:", flush=True)
data_train_loader = DataLoader(data_train, batch_size=batch_size,
shuffle=True, num_workers=numworkers, pin_memory=True)
# +
# (patch, img)=data_train[2]
# fig, ax = plt.subplots(1,2, figsize=(10,4)) # 1 row, 2 columns
# #build output showing original patch (after augmentation), class = 1 mask, weighting mask, overall mask (to see any ignored classes)
# ax[0].imshow(np.moveaxis(patch.numpy(),0,-1))
# ax[1].imshow(img)
# -
optim = torch.optim.Adam(model.parameters(),lr=.1)
best_loss = np.infty
color_trans = Compose([
HueSaturationValue(hue_shift_limit=50,sat_shift_limit=0,val_shift_limit=0,p=1),
ToTensor()
])
# +
start_time = time.time()
writer = SummaryWriter(log_dir=f"{args.outdir}/{datetime.now().strftime('%b%d_%H-%M-%S')}")
criterion = nn.MSELoss()
best_loss = np.infty
best_epoch = -1
for epoch in range(num_epochs):
if(epoch> num_min_epochs and epoch-best_epoch > num_epochs_earlystop):
print(f'USER: DL model training stopping due to lack of progress. Current Epoch:{epoch} Last Improvement: {best_epoch}', flush=True)
break
all_loss = torch.zeros(0).to(device)
for X1, X2, X_orig in data_train_loader:
X = torch.cat((X1, X2), 0)
X = X.to(device)
halfX=int(X.shape[0]/2)
prediction = model(X) # [N, 2, H, W]
Xfeatures=dr.features
loss1 = criterion(prediction, X)
loss2 = criterion(Xfeatures[0:halfX,::], Xfeatures[halfX:,::])
loss=loss1+loss2
optim.zero_grad()
loss.backward()
optim.step()
all_loss = torch.cat((all_loss, loss.detach().view(1, -1)))
writer.add_scalar(f'train/loss', loss, epoch)
print(f'PROGRESS: {epoch+1}/{num_epochs} | {timeSince(start_time, (epoch+1) / num_epochs)} | {loss.data}', flush=True)
print('%s ([%d/%d] %d%%),total loss: %.4f \t loss1: %.4f \t loss2: %.4f ' % (timeSince(start_time, (epoch+1) / num_epochs),
epoch+1, num_epochs ,(epoch+1) / num_epochs * 100, loss.data,loss1.data,loss2.data),end="", flush=True)
all_loss = all_loss.cpu().numpy().mean()
if all_loss < best_loss:
best_loss = all_loss
best_epoch = epoch
print(" **", flush=True)
state = {'epoch': epoch + 1,
'model_dict': model.state_dict(),
'optim_dict': optim.state_dict(),
'best_loss_on_test': all_loss,
'n_classes': n_classes,
'in_channels': in_channels,
'padding': padding,
'depth': depth,
'wf': wf,
'up_mode': up_mode, 'batch_norm': batch_norm}
torch.save(state, f"{args.outdir}/best_model.pth")
else:
print("", flush=True)
print(f'USER: Training of base model complete!', flush=True)
projname=args.outdir.split("/")[2]
print(f"RETVAL: {projname}", flush=True)
except:
track = traceback.format_exc()
track = track.replace("\n","\t")
print(f"ERROR: {track}", flush=True)
sys.exit(1)
# +
# import matplotlib.pyplot as plt
# img, imorig = data_train[2]
# output=model(img[None,::].to(device))
# output=output.detach().squeeze().cpu().numpy()
# output=np.moveaxis(output,0,-1)
# output.shape
# fig, ax = plt.subplots(1,2, figsize=(10,4)) # 1 row, 2 columns
# #build output showing original patch (after augmentation), class = 1 mask, weighting mask, overall mask (to see any ignored classes)
# ax[0].imshow(np.moveaxis(img.numpy(),0,-1))
# ax[1].imshow(output)
# plt.show()
# # -
# X.shape
# def getImage(X,i):
# return np.moveaxis(X[i,:,:,:].detach().cpu().numpy(),0,-1)
# plt.imshow(getImage(X,3))
# plt.imshow(Xfeatures[3,3,:,:].squeeze().detach().cpu().numpy())
# plt.imshow(Xmodfeatures[1,7,:,:].squeeze().detach().cpu().numpy())
# #---- rubbish below?
# # +
# fig, ax = plt.subplots(1,2, figsize=(10,4)) # 1 row, 2 columns
# #build output showing original patch (after augmentation), class = 1 mask, weighting mask, overall mask (to see any ignored classes)
# ax[0].imshow(xorig)
# ax[1].imshow(np.moveaxis(x.cpu().numpy(),0,-1))
# # +
# Xmod=np.zeros(X.shape)
# for ii,x in enumerate(X):
# #print(x.shape)
# xorig = np.moveaxis(x.cpu().numpy(),0,-1)*255
# xorig = xorig.astype(np.uint8)
# x = color_trans(image=xorig)['image']
# Xmod[ii,::]=x
# dummy = model(torch.from_numpy(Xmod).type('torch.FloatTensor').to(device)) # [N, 2, H, W]
# Xmodfeatures=dr.features
# # -
# data_train=Dataset(glob.glob('./projects/glom/patches/*.png'), transform=img_transform) #img_transform)
# data_train_loader = DataLoader(data_train, batch_size=batch_size,
# shuffle=True, num_workers=0, pin_memory=True) #,pin_memory=True)
# [img,img2]=data_train[3]
# # +
# # #%%timeit
# output=model(img[None,::].to(device))
# output=output.detach().squeeze().cpu().numpy()
# output=np.moveaxis(output,0,-1)
# output.shape
# fig, ax = plt.subplots(1,2, figsize=(10,4)) # 1 row, 2 columns
# ax[0].imshow(output)
# ax[1].imshow(np.moveaxis(img.numpy(),0,-1))
# # -