From ba4f08892b94b4c94dc05bd0221addbf48d6a16e Mon Sep 17 00:00:00 2001 From: Avimitin Date: Thu, 8 Aug 2024 18:37:09 +0800 Subject: [PATCH] [pytorch] add matmul sample --- tests/pytorch/default.nix | 2 +- tests/pytorch/matmul/config.nix | 52 +++++++++++++++++++++++++++++++++ tests/pytorch/matmul/matmul.cc | 22 ++++++++++++++ tests/pytorch/matmul/matmul.py | 26 +++++++++++++++++ 4 files changed, 101 insertions(+), 1 deletion(-) create mode 100644 tests/pytorch/matmul/config.nix create mode 100644 tests/pytorch/matmul/matmul.cc create mode 100644 tests/pytorch/matmul/matmul.py diff --git a/tests/pytorch/default.nix b/tests/pytorch/default.nix index 6b54203d48..eb232fc2b2 100644 --- a/tests/pytorch/default.nix +++ b/tests/pytorch/default.nix @@ -9,7 +9,7 @@ let - builder = makeBuilder { casePrefix = "mlir"; }; + builder = makeBuilder { casePrefix = "pytorch"; }; build = { caseName, sourcePath }: let buddyBuildConfig = import (sourcePath + "/config.nix"); diff --git a/tests/pytorch/matmul/config.nix b/tests/pytorch/matmul/config.nix new file mode 100644 index 0000000000..663aff59dc --- /dev/null +++ b/tests/pytorch/matmul/config.nix @@ -0,0 +1,52 @@ +{ + includes = [ + ../memref.hpp + ]; + + buddyOptArgs = [ + [ + "--pass-pipeline" + "builtin.module(func.func(tosa-to-linalg-named, tosa-to-linalg, tosa-to-tensor, tosa-to-arith), empty-tensor-to-alloc-tensor, convert-elementwise-to-linalg, arith-bufferize, func.func(linalg-bufferize, tensor-bufferize), func-bufferize)" + ] + [ + "--pass-pipeline" + "builtin.module(func.func(buffer-deallocation-simplification, convert-linalg-to-loops), eliminate-empty-tensors, func.func(llvm-request-c-wrappers))" + ] + [ + "--arith-expand" + "--eliminate-empty-tensors" + "--empty-tensor-to-alloc-tensor" + "--one-shot-bufferize" + "--matmul-paralell-vectorization-optimize" + "--batchmatmul-optimize" + "--convert-linalg-to-affine-loops" + "--affine-loop-fusion" + "--affine-parallelize" + "--lower-affine" + "--convert-scf-to-openmp" + "--func-bufferize-dynamic-offset" + "--tensor-bufferize" + "--arith-bufferize" + "--buffer-deallocation" + "--finalizing-bufferize" + "--convert-vector-to-scf" + "--expand-strided-metadata" + "--cse" + "--lower-vector-exp" + "--lower-rvv=rv32" + "--convert-vector-to-llvm" + "--memref-expand" + "--arith-expand" + "--convert-arith-to-llvm" + "--finalize-memref-to-llvm" + "--convert-scf-to-cf" + "--llvm-request-c-wrappers" + "--convert-openmp-to-llvm" + "--convert-arith-to-llvm" + "--convert-math-to-llvm" + "--convert-math-to-libm" + "--convert-func-to-llvm" + "--reconcile-unrealized-casts" + ] + ]; +} diff --git a/tests/pytorch/matmul/matmul.cc b/tests/pytorch/matmul/matmul.cc new file mode 100644 index 0000000000..b523f06268 --- /dev/null +++ b/tests/pytorch/matmul/matmul.cc @@ -0,0 +1,22 @@ +#include "memref.hpp" + +extern "C" void _mlir_ciface_forward(MemRef *output, + MemRef *arg1, + MemRef *arg2); + +// One-dimension, with length 512 +static const int32_t sizes[3] = {8, 8, 8}; + +__attribute((section(".vdata"))) float input_float_1[512]; +MemRef input1(input_float_1, sizes); + +__attribute((section(".vdata"))) float input_float_2[512]; +MemRef input2(input_float_2, sizes); + +__attribute((section(".vdata"))) float output_float_1[512]; +MemRef output(output_float_1, sizes); + +extern "C" int test() { + _mlir_ciface_forward(&output, &input1, &input2); + return 0; +} diff --git a/tests/pytorch/matmul/matmul.py b/tests/pytorch/matmul/matmul.py new file mode 100644 index 0000000000..267fe13390 --- /dev/null +++ b/tests/pytorch/matmul/matmul.py @@ -0,0 +1,26 @@ +import torch +import torch._dynamo as dynamo +from torch._inductor.decomposition import decompositions as inductor_decomp + +from buddy.compiler.frontend import DynamoCompiler +from buddy.compiler.ops import tosa + +# Define the input data. +float32_in1 = torch.randn(8, 8, 8).to(torch.float32) +float32_in2 = torch.randn(8, 8, 8).to(torch.float32) + +# Initialize the dynamo compiler. +dynamo_compiler = DynamoCompiler( + primary_registry=tosa.ops_registry, + aot_autograd_decomposition=inductor_decomp, +) + +# Pass the function and input data to the dynamo compiler's importer, the +# importer will first build a graph. Then, lower the graph to top-level IR. +# (tosa, linalg, etc.). Finally, accepts the generated module and weight parameters. +graphs = dynamo_compiler.importer(torch.matmul, *(float32_in1, float32_in2)) +graph = graphs[0] +graph.lower_to_top_level_ir() + +with open("forward.mlir", "w") as mlir_module: + print(graph._imported_module, file = mlir_module)