forked from ryankeleti/ega
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ega1.tex
52 lines (42 loc) · 2.54 KB
/
ega1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
\input{preamble}
\begin{document}
\title{The language of schemes (EGA I)}
\maketitle
\phantomsection
\label{section:ega1}
\tableofcontents
\section*{Summary}
\begin{longtable}{ll}
\textsection\hyperref[section:I.1]{1}. & Affine schemes.\\
\textsection\hyperref[section:I.2]{2}. & Preschemes and morphisms of preschemes.\\
\textsection\hyperref[section:I.3]{3}. & Products of preschemes.\\
\textsection\hyperref[section:I.4]{4}. & Subpreschemes and immersion morphisms.\\
\textsection\hyperref[section:I.5]{5}. & Reduced preschemes; the separation condition.\\
\textsection\hyperref[section:I.6]{6}. & Finiteness conditions.\\
\textsection\hyperref[section:I.7]{7}. & Rational maps.\\
\textsection\hyperref[section:I.8]{8}. & Chevalley schemes.\\
\textsection\hyperref[section:I.9]{9}. & Supplement on quasi-coherent sheaves.\\
\textsection\hyperref[section:I.10]{10}. & Formal schemes.
\end{longtable}
\bigskip
\oldpage[I]{79}
In \textsection\textsection1--8 we do little more than develop a language to be used in what follows.
It should be noted, however, that, in accordance with the general spirit of this treatise, \textsection\textsection7--8 will be used less than the others, and in a less essential way; we speak of Chevalley schemes only for the purpose of relating to the language of Chevalley \cite{I-1} and Nagata \cite{I-9}.
Then, in \textsection9, we give definitions and results concerning quasi-coherent sheaves, some of which are no longer simply a translation of known notions of commutative algebra into a ``geometric'' language, but are instead already of a global nature; they will be indispensable, in the following chapters, when it comes to the global study of morphisms.
Finally, in \textsection10, we introduce a generalization of the notion of a scheme, which will be used as an intermediary in Chapter~III to conveniently formulate and prove the fundamental results of the cohomological study of proper morphisms;
moreover, it should be noted that the notion of formal schemes seems indispensable in expressing certain facts about the ``theory of modules'' (classification problems of algebraic varieties).
The results of \textsection10 will not be used before \textsection3 of Chapter~III, and it is recommended to skip their reading until then.
\bigskip
\input{ega1/ega1-1}
\input{ega1/ega1-2}
\input{ega1/ega1-3}
\input{ega1/ega1-4}
\input{ega1/ega1-5}
\input{ega1/ega1-6}
\input{ega1/ega1-7}
\input{ega1/ega1-8}
\input{ega1/ega1-9}
\input{ega1/ega1-10}
\bibliography{the}
\bibliographystyle{amsalpha}
\end{document}