forked from lbariogl/HyperRoutine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test_data.py
149 lines (101 loc) · 5.38 KB
/
train_test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from hipe4ml.model_handler import ModelHandler
from hipe4ml.tree_handler import TreeHandler
import hipe4ml.analysis_utils as au
import hipe4ml.plot_utils as pu
import mplhep as mpl
import xgboost as xgb
import yaml
matplotlib.use('pdf')
plt.style.use(mpl.style.ALICE)
###############################################################################
parser = argparse.ArgumentParser()
parser.add_argument('--config-file', dest='config_file', help="path to the YAML file with configuration.", default='')
args = parser.parse_args()
config_file = args.config_file
with open(config_file, 'r') as stream:
try:
params = yaml.full_load(stream)
except yaml.YAMLError as exc:
print(exc)
do_training = params['do_training']
do_application = params['do_application']
input_data_path = params['input_data_path']
input_mc_path = params['input_mc_path']
output_dir = params['output_dir']
training_preselections = params['training_preselections']
training_variables = params['training_variables']
test_set_size = params['test_set_size']
bkg_fraction = params["background_over_signal"]
random_state = params["random_state"]
hyperparams = params["hyperparams"]
### create output directory if it does not exist
if not os.path.exists(output_dir):
os.makedirs(output_dir)
## ml_plots_dir
figures_ml_path = output_dir + "/figures_ML"
if not os.path.exists(figures_ml_path):
os.makedirs(figures_ml_path)
print('**********************************')
print(' Running train_test_data.py ')
print('**********************************')
if do_training:
signalH = TreeHandler(input_mc_path, "O2mchypcands")
bkgH = TreeHandler(input_data_path, "O2datahypcands")
## select background by taking the sidebands of the mass distribution
if training_preselections != '':
signalH.apply_preselections(training_preselections)
bkgH.apply_preselections(f"(fMassH3L<2.95 or fMassH3L>3.02) and {training_preselections}")
else:
bkgH.apply_preselections(f"(fMassH3L<2.95 or fMassH3L>3.02)")
if bkg_fraction!=None:
bkgH.shuffle_data_frame(size=bkg_fraction*len(signalH), inplace=True, random_state=random_state)
print("Signal events: ", len(signalH))
print("Background events: ", len(bkgH))
train_test_data = au.train_test_generator([signalH, bkgH], [1,0], test_size=test_set_size, random_state=random_state)
### create ML output directory if it does not exist
figures_ml_path = output_dir + "/figures_ML"
if not os.path.exists(figures_ml_path):
os.makedirs(figures_ml_path)
distr = pu.plot_distr([bkgH, signalH], training_variables, bins=63, labels=['Signal',"Background"],colors=["blue","red"], log=True, density=True, figsize=(18, 13), alpha=0.3, grid=False)
plt.subplots_adjust(left=0.06, bottom=0.06, right=0.99, top=0.96, hspace=0.55, wspace=0.55)
plt.savefig(figures_ml_path + "/features_distributions.png", bbox_inches='tight')
corr = pu.plot_corr([signalH,bkgH], training_variables + ["fMassH3L"], ['Signal',"Background"])
corr[0].savefig(figures_ml_path + "/correlations.png",bbox_inches='tight')
print("---------------------------------------------")
print("Data loaded. Training and testing ....")
model_hdl = ModelHandler(xgb.XGBClassifier(), training_variables)
model_hdl.set_model_params(hyperparams)
y_pred_test = model_hdl.train_test_model(train_test_data, True, True)
print("Model trained and tested. Saving results ...")
bdt_out_plot = pu.plot_output_train_test(model_hdl, train_test_data, 100, True, ["Signal", "Background"], True, density=True)
bdt_out_plot.savefig(figures_ml_path + "/bdt_output.png")
feature_importance_plot = pu.plot_feature_imp(train_test_data[2], train_test_data[3], model_hdl)
feature_importance_plot[0].savefig(figures_ml_path + "/feature_importance_1.png")
feature_importance_plot[1].savefig(figures_ml_path + "/feature_importance_2.png")
## dump model handler and efficiencies vs score
model_hdl.dump_model_handler(output_dir + "/model_hndl.pkl")
eff_arr = np.round(np.arange(0.5,0.99,0.01),2)
score_eff_arr = au.score_from_efficiency_array(train_test_data[3], y_pred_test, eff_arr)
np.save(output_dir + "/efficiency_arr.npy", eff_arr)
np.save(output_dir + "/score_efficiency_arr.npy",score_eff_arr)
print("Training done")
print("---------------------------------------------")
del signalH, bkgH
if do_application:
print("---------------------------------------------")
print("Starting application: ..")
dataH = TreeHandler(input_data_path, "O2datahypcands")
if training_preselections != '':
dataH.apply_preselections(training_preselections)
bdt_eff_arr = np.load(output_dir + "/efficiency_arr.npy")
score_eff_arr = np.load(output_dir + "/score_efficiency_arr.npy")
model_hdl = ModelHandler()
model_hdl.load_model_handler(output_dir + "/model_hndl.pkl")
dataH.apply_model_handler(model_hdl, column_name="model_output")
print("Application done. Saving results ...")
dataH.write_df_to_parquet_files("dataH.parquet", output_dir)