Skip to content

Latest commit

 

History

History
31 lines (23 loc) · 1.45 KB

README.md

File metadata and controls

31 lines (23 loc) · 1.45 KB

DailyLife

5-fold CV results

Binary classification (low vs. high) with 2,181 1-min segments of ['gsr', 'bpm', 'rri', 'temp'].

Arousal

$ python baseline.py -r ~/data/dailyLife2/datasets/60s -e ~/data/dailyLife2/metadata/esms_activity.csv -s 1 -t arousal --cv 'kfold' --splits 5 --shuffle --gpu
Metric Random Majority Class ratio Gaussian NB XGBoost
acc. 0.501611 0.52132 0.499783 0.553404 0.55662
auroc 0.5 0.5 0.499221 0.577678 0.586021
bacc. 0.501703 0.5 0.499221 0.557775 0.555669
f1 0.510292 0.685352 0.515729 0.513229 0.575862

Valence

$ python baseline.py -r ~/data/dailyLife2/datasets/60s -e ~/data/dailyLife2/metadata/esms_activity.csv -s 1 -t valence --cv 'kfold' --splits 5 --shuffle --gpu
Metric Random Majority Class ratio Gaussian NB XGBoost
acc. 0.491061 0.786795 0.661163 0.746965 0.75929
auroc 0.5 0.5 0.498554 0.521622 0.568744
bacc. 0.48922 0.5 0.498554 0.510779 0.521717
f1 0.603419 0.880677 0.783953 0.847594 0.859448