O(N^2) Time and O(1) Space
Brute force:
For each day, find the max profit that can be made by buying at that day and selling at the next j days.
class Solution {
public:
int maxProfit (vector<int >& prices) {
int n = prices.size ();
int maxProfit=0 ;
for (int i=0 ;i<n;i++){
for (int j=i+1 ;j<n;j++){
maxProfit=max (maxProfit,prices[j]-prices[i]);
}
}
return maxProfit;
}
};
We try to sell stock each day.
For each day from last we store maximum stock price that will appear.
then for each day we calculate by selling the stock.
class Solution {
public:
int maxProfit (vector<int >& prices) {
int n = prices.size ();
int maxProfit = 0 ;
vector<int > futureMax (n);
futureMax[n-1 ] = prices[n-1 ];
for (int i=n-2 ; i>=0 ; i--) {
futureMax[i] = max (prices[i], futureMax[i + 1 ]);
}
for (int i=0 ; i<n; i++) {
maxProfit = max (maxProfit, futureMax[i] - prices[i]);
}
return maxProfit;
}
};
We try to buy stock each day.
For each day we keep track of the minimum price of the stock that appeared before it.
if todays stock price is minimum we will update it.
return max profit.
class Solution {
public:
int maxProfit (vector<int >& prices) {
int n = prices.size ();
int maxProfit=0 ,minStockPrice=1e9 ;
for (int i=0 ;i<n;i++){
maxProfit=max (maxProfit,prices[i]-minStockPrice);
minStockPrice=min (minStockPrice,prices[i]);
}
return maxProfit;
}
};
The inner for loop can be optimized and will require 33% less time.
If the price of the stock that day less than minimum price so far then there is no chance to get profit so we only update minimum price.
else we can get profit, update maxProfit.
class Solution {
public:
int maxProfit (vector<int >& prices) {
int n = prices.size ();
int maxProfit=0 ,minStockPrice=1e9 ;
for (int i=0 ;i<n;i++){ // 33% faster
if (minStockPrice>prices[i])
minStockPrice=prices[i];
else
maxProfit=max (maxProfit,prices[i]-minStockPrice);
}
return maxProfit;
}
};