This repository has been archived by the owner on Jun 23, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperator_noise_test.py
99 lines (79 loc) · 4.14 KB
/
operator_noise_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import sys
import time
import argparse
import numpy as np
import tensorflow as tf
from core import Play
import utils
import trading_data as tdata
import log as logging
import constants
writer = utils.get_tf_summary_writer("./log/operators")
sess = utils.get_session()
LOG = logging.getLogger(__name__)
epochs = constants.EPOCHS
EPOCHS = constants.EPOCHS
def fit(inputs, outputs, width, method, true_weight, loss='mse', mu=0, sigma=0.001, loss_file_name="./tmp/operator_loss_history.csv"):
LOG.debug("timestap is: {}".format(inputs.shape[0]))
total_timesteps = inputs.shape[0]
train_timesteps = int(total_timesteps * 0.5)
batch_size = 1
EPOCHS = 10000
epochs = EPOCHS // batch_size
# epochs = 1
steps_per_epoch = batch_size
units = 10
train_inputs, train_outputs = inputs[:train_timesteps], outputs[:train_timesteps]
test_inputs, test_outputs = inputs[train_timesteps:], outputs[train_timesteps:]
play = Play(batch_size=batch_size,
units=units,
activation=None,
network_type=constants.NetworkType.OPERATOR,
loss=loss)
start = time.time()
if loss == 'mse':
play.fit(train_inputs, train_outputs, verbose=1, epochs=epochs, steps_per_epoch=steps_per_epoch)
train_loss, metrics = play.evaluate(train_inputs, train_outputs, steps_per_epoch=steps_per_epoch)
test_loss, metrics = play.evaluate(test_inputs, test_outputs, steps_per_epoch=steps_per_epoch)
train_predictions = play.predict(train_inputs, steps_per_epoch=1)
test_predictions = play.predict(test_inputs, steps_per_epoch=1)
train_mu = train_sigma = test_mu = test_sigma = -1
elif loss == 'mle':
play.fit2(train_inputs, mu, sigma, verbose=1, epochs=epochs, steps_per_epoch=steps_per_epoch, loss_file_name=loss_file_name)
train_predictions, train_mu, train_sigma = play.predict2(train_inputs, steps_per_epoch=1)
test_predictions, test_mu, test_sigma = play.predict2(test_inputs, steps_per_epoch=1)
train_loss = ((train_outputs - train_predictions) ** 2).mean()
test_loss = ((test_outputs - test_predictions) ** 2).mean()
train_loss = float(train_loss)
test_loss = float(test_loss)
end = time.time()
LOG.debug("time cost: {}s".format(end-start))
LOG.debug("number of layer is: {}".format(play.number_of_layers))
LOG.debug("weight: {}".format(play.weight))
train_predictions = train_predictions.reshape(-1)
test_predictions = test_predictions.reshape(-1)
predictions = np.hstack([train_predictions, test_predictions])
loss = [train_loss, test_loss, train_mu, test_mu, train_sigma, test_sigma]
return predictions, loss
if __name__ == '__main__':
methods = constants.METHODS
weights = constants.WEIGHTS
widths = constants.WIDTHS
loss_name = 'mse'
# train dataset
mu = 0
sigma = 0.1
points = 5000
for method in methods:
for weight in weights:
for width in widths:
LOG.debug("Processing method: {}, weight: {}, width: {}".format(method, weight, width))
fname = constants.FNAME_FORMAT["operators_noise"].format(method=method, weight=weight, width=width, mu=mu, sigma=sigma, points=points)
inputs, outputs = tdata.DatasetLoader.load_data(fname)
loss_file_name = constants.FNAME_FORMAT["operators_noise_loss_histroy"].format(method=method, weight=weight, width=width, mu=mu, sigma=sigma, points=points, loss=loss_name)
# inputs, outputs = inputs[:40], outputs[:40]
predictions, loss = fit(inputs, outputs, width, method, weight, loss_name, mu, sigma, loss_file_name)
fname = constants.FNAME_FORMAT["operators_noise_loss"].format(method=method, weight=weight, width=width, mu=mu, sigma=sigma, points=points, loss=loss_name)
tdata.DatasetSaver.save_loss({"loss": loss}, fname)
fname = constants.FNAME_FORMAT["operators_noise_predictions"].format(method=method, weight=weight, width=width, mu=mu, sigma=sigma, points=points, loss=loss_name)
tdata.DatasetSaver.save_data(inputs, predictions, fname)