-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
147 lines (132 loc) · 6.06 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import logging
import torch
import torchvision
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn.functional as F
from data import iterator_factory
from train import metric
from train.model import model
from train.lr_scheduler import MultiFactorScheduler
def train_model(sym_net, model_prefix, dataset, input_conf,
clip_length=16, train_frame_interval=2, val_frame_interval=2,
resume_epoch=-1, batch_size=4, save_frequency=1,
lr_base=0.01, lr_factor=0.1, lr_steps=[400000, 800000],
end_epoch=1000, distributed=False,
pretrained_3d=None, fine_tune=False,
load_from_frames=False, use_flow=False, triplet_loss=False,
**kwargs):
assert torch.cuda.is_available(), "Currently, we only support CUDA version"
# data iterator
iter_seed = torch.initial_seed() \
+ (torch.distributed.get_rank() * 10 if distributed else 100) \
+ max(0, resume_epoch) * 100
train_iter, eval_iter = iterator_factory.creat(name=dataset,
batch_size=batch_size,
clip_length=clip_length,
train_interval=train_frame_interval,
val_interval=val_frame_interval,
mean=input_conf['mean'],
std=input_conf['std'],
seed=iter_seed,
load_from_frames=load_from_frames,
use_flow=use_flow)
# wapper (dynamic model)
if use_flow:
class LogNLLLoss(torch.nn.Module):
def __init__(self):
super(LogNLLLoss, self).__init__()
self.loss = torch.nn.NLLLoss()
def forward(self, output, target):
output = torch.log(output)
loss = self.loss(output, target)
return loss
# criterion = LogNLLLoss().cuda()
criterion = torch.nn.CrossEntropyLoss().cuda()
elif triplet_loss:
logging.info("Using triplet loss")
criterion=torch.nn.MarginRankingLoss().cuda()
else:
criterion = torch.nn.CrossEntropyLoss().cuda()
net = model(net=sym_net,
criterion=criterion,
triplet_loss=triplet_loss,
model_prefix=model_prefix,
step_callback_freq=50,
save_checkpoint_freq=save_frequency,
opt_batch_size=batch_size, # optional
)
net.net.cuda()
# config optimization
param_base_layers = []
param_new_layers = []
name_base_layers = []
for name, param in net.net.named_parameters():
if fine_tune:
# if name.startswith('classifier'):
if 'classifier' in name or 'fc' in name:
param_new_layers.append(param)
else:
param_base_layers.append(param)
name_base_layers.append(name)
else:
param_new_layers.append(param)
if name_base_layers:
out = "[\'" + '\', \''.join(name_base_layers) + "\']"
logging.info("Optimizer:: >> recuding the learning rate of {} params: {}".format(len(name_base_layers),
out if len(out) < 300 else out[0:150] + " ... " + out[-150:]))
if distributed:
net.net = torch.nn.parallel.DistributedDataParallel(net.net).cuda()
else:
net.net = torch.nn.DataParallel(net.net).cuda()
optimizer = torch.optim.SGD([{'params': param_base_layers, 'lr_mult': 0.2},
{'params': param_new_layers, 'lr_mult': 1.0}],
lr=lr_base,
momentum=0.9,
weight_decay=0.0001,
nesterov=True)
# load params from pretrained 3d network
if pretrained_3d:
if resume_epoch < 0:
if os.path.exists(pretrained_3d):
# assert os.path.exists(pretrained_3d), "cannot locate: '{}'".format(pretrained_3d)
logging.info("Initializer:: loading model states from: `{}'".format(pretrained_3d))
checkpoint = torch.load(pretrained_3d)
net.load_state(checkpoint['state_dict'], mode='ada')
else:
logging.warning("cannot locate: '{}'".format(pretrained_3d))
else:
logging.info("Initializer:: skip loading model states from: `{}'"
+ ", since it's going to be overwrited by the resumed model".format(pretrained_3d))
# resume training: model and optimizer
if resume_epoch < 0:
epoch_start = 0
step_counter = 0
else:
net.load_checkpoint(epoch=resume_epoch, optimizer=optimizer)
epoch_start = resume_epoch
step_counter = epoch_start * train_iter.__len__()
# set learning rate scheduler
num_worker = 1
lr_scheduler = MultiFactorScheduler(base_lr=lr_base,
steps=[int(x/(batch_size*num_worker)) for x in lr_steps],
factor=lr_factor,
step_counter=step_counter)
# define evaluation metric
if triplet_loss:
metrics = metric.MetricList(metric.Loss(name="loss-triplet"),
metric.TripletAccuracy(name="acc"), )
else:
metrics = metric.MetricList(metric.Loss(name="loss-ce"),
metric.Accuracy(name="top1", topk=1),
metric.Accuracy(name="top5", topk=5), )
# enable cudnn tune
cudnn.benchmark = True
net.fit(train_iter=train_iter,
eval_iter=eval_iter,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
metrics=metrics,
epoch_start=epoch_start,
epoch_end=end_epoch,)