forked from lpty/recommendation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
40 lines (31 loc) · 1.4 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# -*- coding: utf-8 -*-
# Origin resource from MovieLens: http://grouplens.org/datasets/movielens/1m
import pandas as pd
class Channel:
"""
simple processing for *.dat to *.csv
"""
def __init__(self):
self.origin_path = 'data/{}'
def process(self):
print('Process user data...')
self._process_user_data()
print('Process movies data...')
self._process_movies_date()
print('Process rating data...')
self._process_rating_data()
print('End.')
def _process_user_data(self, file='users.dat'):
f = pd.read_table(self.origin_path.format(file), sep='::', engine='python',
names=['userID', 'Gender', 'Age', 'Occupation', 'Zip-code'])
f.to_csv(self.origin_path.format('users.csv'), index=False)
def _process_rating_data(self, file='ratings.dat'):
f = pd.read_table(self.origin_path.format(file), sep='::', engine='python',
names=['UserID', 'MovieID', 'Rating', 'Timestamp'])
f.to_csv(self.origin_path.format('ratings.csv'), index=False)
def _process_movies_date(self, file='movies.dat'):
f = pd.read_table(self.origin_path.format(file), sep='::', engine='python',
names=['MovieID', 'Title', 'Genres'])
f.to_csv(self.origin_path.format('movies.csv'), index=False)
if __name__ == '__main__':
Channel().process()