-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhmatrix.cpp
104 lines (89 loc) · 2.84 KB
/
hmatrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
using namespace std;
#include <omp.h>
#include "hmatrix.h"
Ham_1dXXZ::Ham_1dXXZ(Basis* _basis, const double& _g, const int& _bc) :
basis(_basis),
LatticeSize(basis->get_L()),
Dim(basis->get_Dim()),
g(_g),
bc(_bc)
{
cout << "Dim = " << Dim << endl;
}
Ham_1dXXZ::~Ham_1dXXZ()
{
}
// build dense matrix of H
void Ham_1dXXZ::DenseMat_Build()
{
size_t matlen = (size_t)Dim * (size_t)Dim;
cout << "Dim*Dim = " << matlen << endl;
cout << "Estimated memory cost of the dense matrix: " << matlen * 8 / 1e9 << " GB" << endl;
DMat = new double[matlen];
spec = new double[Dim];
for (size_t k = 0; k < matlen; k++) DMat[k] = 0;
int L1 = LatticeSize - bc;
//omp_set_num_threads(NUMTHREADS);
// #pragma omp parallel for schedule(dynamic)
/*-------------------------------------------------------------------
H = sum_{i < j}J_{ij}[b_i^+ b_j^- + b_i^- b_j^+]
+ sum_{i} (h_i + dh_i) (b_i^+b_i^- - 1/2)
--------------------------------------------------------------------*/
for (l_int k = 0; k < Dim; k++) {
l_int Num_k = basis->get_state(k);
//l_int arrayindex = size_t(k) + size_t(k) * size_t(Dim);
l_int arrayindex = (size_t)k + (size_t)k * (size_t)Dim;
for (int i = 0; i < L1; i++)
{
int j = (i + 1) % LatticeSize;
int k_i = ((Num_k >> i) & 1);
int k_j = ((Num_k >> j) & 1);
// diagonal term ----------------------------------------------
DMat[arrayindex] += g * (k_i - 0.5) * (k_j - 0.5);
// off-diagonal term ------------------------------------------
if (k_i != k_j)
{
// then flip the states on i and j
l_int Num_l = Num_k ^ (1 << i) ^ (1 << j);
l_int state_l = basis->get_index(Num_l);
//DMat[size_t(k) * size_t(Dim) + size_t(state_l)] += 0.5;
DMat[(size_t)k * (size_t)Dim + (size_t)state_l] += 0.5;
}
}
}
}
void Ham_1dXXZ::DenseMat_Eig()
{
// 'V'/'N' with/without eigenvectors
char job_vec = 'V';
DenseMatrixEigenSolver(LAPACK_ROW_MAJOR, job_vec, 'U', Dim, DMat, Dim, spec);
}
//
void Ham_1dXXZ::DenseMat_SpecificHeat()
{
double dT = 0.05;
int nT = 50;
double one = 1;
ofstream ofc("Dense_T_lnZ_H_H2_C.dat");
for (int iT = 0; iT < nT; iT++)
{
double T = (iT + 1) * dT;
double beta = 1 / T;
double* aux = new double[Dim];
cblas_dcopy(Dim, spec, 1, aux, 1);
cblas_dscal(Dim, -beta, aux, 1);
vdExp(Dim, aux, aux);
double Z = cblas_ddot(Dim, aux, 1, &one, 0);
double ob_H = cblas_ddot(Dim, aux, 1, spec, 1) / Z;
vdMul(Dim, aux, spec, aux);
double ob_H2 = cblas_ddot(Dim, aux, 1, spec, 1) / Z;
double C = (ob_H2 - ob_H * ob_H) / T / T / LatticeSize;
//
ofc << setprecision(4) << T << " ";
ofc << setprecision(14) << log(Z) << " ";
ofc << setprecision(14) << ob_H << " ";
ofc << setprecision(14) << ob_H2 << " ";
ofc << setprecision(14) << C << endl;
}
ofc.close();
}