forked from mathewbarlow/potential-vorticity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gfs_pv_time_animation_1.0.py
384 lines (315 loc) · 12.1 KB
/
gfs_pv_time_animation_1.0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#
# run on python 3.7
#
# python code to calculate the dynamic tropoapuse from online GFS data over
# a given date range (has to be within 7 days of the current time) and make
# a 3D animation. As the data is accessed online and the calculations are
# poorly coded, the program can take a while to run.
#
# NB:
# 1. Can take hours to run, due to both slow data access and poor coding
# 2. Does not fail gently if there is a data access problem (this could
# be fixed)
# 3. Not currently able to handle a longitude range that crosses 0 (this
# could also be fixed, fairly easily)
# 4. Very poorly coded and not commented: may cause nausea, vomiting, hair
# loss, and uncontrollable crying. You have been warned!
#
# The date and lat-lon range can be set below.
#
# (poorly) coded by Mathew Barlow
# initial release: 7 Feb 2020
# updated: 9 Feb 2020
#
# This code has *not* been extensively tested and has been, in part,
# awkwardly translated from other coding languages, so if you find
# any errors or have any suggestions or improvements, including for
# the plotting, please let me know at [email protected] . Thanks!
#
# Support from NSF AGS-1623912 is gratefully acknowledged
#
import numpy as np
import netCDF4
import matplotlib.pyplot as plt
import matplotlib.ticker as tick
from mpl_toolkits.mplot3d import axes3d
import cartopy.crs as ccrs
from scipy.ndimage import gaussian_filter
from cartopy.feature import NaturalEarthFeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from cartopy.mpl.ticker import LatitudeFormatter, LongitudeFormatter
import imageio
import os
from datetime import datetime
from datetime import timedelta
real_current_time = datetime.now().strftime("%H:%M:%S")
print(real_current_time)
# VALUES TO SET *************************************************
# set date, lat-lon range, PV-value definition of tropopause
# and directory to put images
date_start='20200208'
hour_start='18'
date_end='20200209'
hour_end='06'
(lat1,lat2)=(20,60)
(lon1,lon2)=(-130,-60)
tpdef=2 # definition of tropopause in PVU
dirout= '/Users/mathew_barlow/downloads/'
#****************************************************************
if lon2<0:
lon1=lon1+360
lon2=lon2+360
start_date=datetime.strptime(date_start+hour_start, '%Y%m%d%H')
end_date=datetime.strptime(date_end+hour_end, '%Y%m%d%H')
diff = end_date-start_date
days, seconds = diff.days, diff.seconds
hours = days * 24 + seconds // 3600
nt = np.int((hours+6)/6)
dates = start_date
it=0
while(it<nt-1):
lag_date=start_date+timedelta(hours=(it+1)*6)
dates=np.append(dates,lag_date)
it=it+1
images = []
filenames = []
it=0
while(it<nt-1):
mydate=dates[it].strftime('%Y%m%d')
myhour=dates[it].strftime('%H')
time_out=mydate+myhour
#constants
re=6.37e6
g=9.81
cp=1004.5
r=2*cp/7
kap=r/cp
omega=7.292e-5
pi=3.14159265
# open dataset, retreive variables, close dataset
url='https://nomads.ncep.noaa.gov/dods/gfs_0p25/gfs'+\
mydate+'/gfs_0p25_'+myhour+'z_anl'
file = netCDF4.Dataset(url)
lat_in = file.variables['lat'][:]
lon_in = file.variables['lon'][:]
lev = file.variables['lev'][:]
pres2pv_in = file.variables['pres2pv'][0,:,:]
pressfc_in = file.variables['pressfc'][0,:,:]
nlev = lev.size
nx = lon_in.size
ny = lat_in.size
u_in = np.full((nlev, ny, nx), None)
v_in = np.full((nlev, ny, nx), None)
t_in = np.full((nlev, ny, nx), None)
hgt_in = np.full((nlev, ny, nx), None)
# the following lines shouldn't be necessary but appear to help
# with data access
ilev = 0
while ilev < nlev:
print(ilev)
u_in[ilev, :, :] = file.variables['ugrdprs'][0, ilev, :, :]
ilev = ilev + 1
ilev = 0
while ilev < nlev:
v_in[ilev, :, :] = file.variables['vgrdprs'][0, ilev, :, :]
ilev = ilev + 1
ilev = 0
while ilev < nlev:
t_in[ilev, :, :] = file.variables['tmpprs'][0, ilev, :, :]
ilev = ilev + 1
ilev = 0
while ilev < nlev:
hgt_in[ilev, :, :] = file.variables['hgtprs'][0, ilev, :, :]
ilev = ilev + 1
# without data access issues, this would be the way to go:
#t_in = file.variables['tmpprs'][0,:,:,:]
#u_in = file.variables['ugrdprs'][0,:,:,:]
#v_in = file.variables['vgrdprs'][0,:,:,:]
#hgt_in = file.variables['hgtprs'][0,:,:,:]
file.close()
# get array indices for lat-lon range
# specified above
iy1 = np.argmin( np.abs( lat_in - lat1 ) )
iy2 = np.argmin( np.abs( lat_in - lat2 ) )
ix1 = np.argmin( np.abs( lon_in - lon1 ) )
ix2 = np.argmin( np.abs( lon_in - lon2 ) )
# select specified lat-lon range
t=t_in[:,iy1:iy2,ix1:ix2]
lon=lon_in[ix1:ix2]
lat=lat_in[iy1:iy2]
u=u_in[:,iy1:iy2,ix1:ix2]
v=v_in[:,iy1:iy2,ix1:ix2]
hgt=hgt_in[:,iy1:iy2,ix1:ix2]
pres2pv=pres2pv_in[iy1:iy2,ix1:ix2]
pressfc=pressfc_in[iy1:iy2,ix1:ix2]
# some prep work for derivatives
xlon,ylat=np.meshgrid(lon,lat)
# define potential temperature and Coriolis parameter
theta=t*(1.E5/(lev[:,np.newaxis,np.newaxis]*100))**kap
f=2*omega*np.sin(ylat*pi/180)
lon = np.array(lon, dtype='float')
lat = np.array(lat, dtype='float')
lev = np.array(lev, dtype='float')
u = np.array(u, dtype='float')
v = np.array(v, dtype='float')
hgt = np.array(hgt, dtype='float')
pres2pv = np.array(pres2pv, dtype='float')
pressfc = np.array(pressfc, dtype='float')
theta = np.array(theta, dtype='float')
f = np.array(f, dtype='float')
# calculate derivatives
def ddp(f):
# handle unevenly-spaced levels with 2nd order
# Lagrange interpolation
# except for top and bottom, where use forward diff
lev3=lev.reshape(lev.size,1,1)*100
dpp=lev3-np.roll(lev3,-1,axis=0)
dpm=lev3-np.roll(lev3,1,axis=0)
fp=np.roll(f,-1,axis=0)
fm=np.roll(f,1,axis=0)
ddp_f=(
fm*dpp/( (dpp-dpm)*(-dpm) ) +
f*(dpp+dpm)/( dpm*dpp ) +
fp*dpm/( (dpm-dpp)*(-dpp) )
)
ddp_f[0,:,:]=(f[1,:,:]-f[0,:,:])/(lev3[1,:,:]-lev3[0,:,:])
ddp_f[-1,:,:]=(f[-1,:,:]-f[-2,:,:])/(lev3[-2,:,:]-lev3[-1,:,:])
return(ddp_f)
def ddx(f):
# use center-difference, assuming evenly spaced lon
# except for side-boundaries, where use forward diff
x=(re*np.cos(ylat*np.pi/180)*np.pi/180)*lon
x3=x.reshape(1,x.shape[0],x.shape[1])
dx3=np.roll(x3,-1,axis=2)-np.roll(x3,1,axis=2)
ddx_f=(np.roll(f,-1,axis=2)-np.roll(f,1,axis=2))/dx3
ddx_f[:,:,0]=(f[:,:,1]-f[:,:,0])/(x3[:,:,1]-x3[:,:,0])
ddx_f[:,:,-1]=(f[:,:,-2]-f[:,:,-1])/(x3[:,:,-2]-x3[:,:,-1])
return(ddx_f)
def ddy(f):
# use center-difference, assuming evenly spaced lon
# except for N/S boundaries, where use forward diff
y=(re*np.pi/180)*lat
y3=y.reshape(1,y.shape[0],1)
dy3=np.roll(y3,-1,axis=1)-np.roll(y3,1,axis=1)
ddy_f=(np.roll(f,-1,axis=1)-np.roll(f,1,axis=1))/dy3
ddy_f[:,0,:]=(f[:,1,:]-f[:,0,:])/(y3[:,1,:]-y3[:,0,:])
ddy_f[:,-1,:]=(f[:,-2,:]-f[:,-1,:])/(y3[:,-2,:]-y3[:,-1,:])
return(ddy_f)
# could also use the built-in gradient operator for derivatives,
# can't remember why I abandoned this
#lev3=lev.reshape(lev.size,1,1)
#ddp_theta=np.gradient(theta,lev3*100,axis=0)
#ddx_theta=np.gradient(theta,axis=2)/dx
#ddy_theta=np.gradient(theta,axis=1)/dy
# some spatial smoothing
gf=1
ddp_theta=ddp(theta)
ddp_u=ddp(gaussian_filter(u,sigma=gf))
ddp_v=ddp(gaussian_filter(v,sigma=gf))
ddx_theta=ddx(theta)
ddy_theta=ddy(theta)
ddx_v=ddx(gaussian_filter(v,sigma=gf))
ddy_ucos=ddy(gaussian_filter(u,sigma=gf)*np.cos(ylat*pi/180))
# calculate contributions to PV and PV
absvort=ddx_v-(1/np.cos(ylat*pi/180))*ddy_ucos+f
pv_one=g*absvort*(-ddp_theta)
pv_two=g*(ddp_v*ddx_theta-ddp_u*ddy_theta)
pv=pv_one+pv_two
# calculate pressure of tropopause, Fortran-style (alas!)
# as well as potential temperature (theta) and height
#
# starting from 10hPa and working down, to avoid
# more complicated vertical structure higher up
#
nx=ix2-ix1+1
ny=iy2-iy1+1
nz=lev.size
nzs=np.argwhere(lev==50.0)[0,0]
tp=np.empty((ny-1,nx-1))*np.nan # initialize as undef
tp_theta=np.empty((ny-1,nx-1))*np.nan # initialize as undef
tp_hgt=np.empty((ny-1,nx-1))*np.nan # initialize as undef
for ix in range(0,nx-1):
for iy in range(0,ny-1):
for iz in range(nzs,0,-1):
if pv[iz,iy,ix]/1e-6<=tpdef:
if np.isnan(tp[iy,ix]):
tp[iy,ix]=(
(lev[iz]*(pv[iz+1,iy,ix]-tpdef*1e-6)
-lev[iz+1]*(pv[iz,iy,ix]-tpdef*1e-6))/
(pv[iz+1,iy,ix]-pv[iz,iy,ix])
)
tp_theta[iy,ix]=(
((lev[iz]-tp[iy,ix])*theta[iz+1,iy,ix]+
(tp[iy,ix]-lev[iz+1])*theta[iz,iy,ix])/
(lev[iz]-lev[iz+1])
)
tp_hgt[iy,ix]=(
((lev[iz]-tp[iy,ix])*hgt[iz+1,iy,ix]+
(tp[iy,ix]-lev[iz+1])*hgt[iz,iy,ix])/
(lev[iz]-lev[iz+1])
)
# calculate PV on the 330K isentropic surface
# (also not in a pythonic way)
nx=ix2-ix1+1
ny=iy2-iy1+1
nz=lev.size
pv330=np.empty((ny-1,nx-1))*np.nan # initialize as undef
for ix in range(0,nx-1):
for iy in range(0,ny-1):
for iz in range(nz-2,0,-1):
if theta[iz,iy,ix]>=330:
if theta[iz-1,iy,ix]<=330:
if np.isnan(pv330[iy,ix]):
pv330[iy,ix]=(
((330-theta[iz-1,iy,ix])*pv[iz,iy,ix]+
(theta[iz,iy,ix]-330)*pv[iz-1,iy,ix])/
(theta[iz,iy,ix]-theta[iz-1,iy,ix])
)
# slight smoothing of result
# (appears to work better than smoothing u,v,t first)
tp=gaussian_filter(tp,sigma=1)
tp_theta=gaussian_filter(tp_theta,sigma=1)
pv330=gaussian_filter(pv330,sigma=1)
# define spatial correlation function for testing results
def scorr(a,b):
abar=np.mean(a)
bbar=np.mean(b)
covar=sum((a-abar)*(b-bbar))
avar=sum((a-abar)**2)
bvar=sum((b-bbar)**2)
r=covar/np.sqrt(avar*bvar)
return(r)
# get date for plotting
fdate=datetime.strptime(mydate, '%Y%m%d').strftime('%d %b %Y')
stime = myhour+'Z '+fdate
plt.close(fig='all')
print('done with calculations for '+stime+' '+np.str(it)+' out of '+np.str(nt))
plt.figure(it,figsize=plt.figaspect(0.5))
pressfc_smooth=gaussian_filter(pressfc,sigma=1)
ax=plt.gca(projection='3d')
surf=ax.plot_surface(xlon,ylat,tp,cmap="coolwarm",alpha=1,
rstride=1,cstride=1,
vmin=50,vmax=650,
linewidth=0, antialiased=False)
ax.plot_surface(xlon,ylat,pressfc_smooth/100,color="lightgray",
rstride=1,cstride=1,
linewidth=0, antialiased=False)
ax.set_zlim(1000,100)
ax.set_xlim(lon1,lon2)
ax.set_ylim(lat1,lat2)
ax.view_init(elev=80,azim=-90)
plt.title('2PVU Dynamic Tropopause over topography\n'+stime)
plt.colorbar(surf,shrink=0.5)
dirout = '/Users/mathew_barlow/downloads/'
filename=dirout +'tp_3D'+ time_out +'.png'
plt.savefig(filename, bbox_inches='tight')
images.append(imageio.imread(filename))
filenames.append(filename)
plt.clf()
it=it+1
imageio.mimsave(dirout+'tp_time_anim.gif', images)
#for file in filenames:
# os.remove(file)
plt.close('all')
real_current_time = datetime.now().strftime("%H:%M:%S")
print(real_current_time)