forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
243 lines (219 loc) · 7.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
Compared with the original paper, this code does not implement
early stopping.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""
import argparse
import time
import dgl
import networkx as nx
import numpy as np
import tensorflow as tf
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
from gat import GAT
from utils import EarlyStopping
def accuracy(logits, labels):
indices = tf.math.argmax(logits, axis=1)
acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
return acc.numpy().item()
def evaluate(model, features, labels, mask):
logits = model(features, training=False)
logits = logits[mask]
labels = labels[mask]
return accuracy(logits, labels)
def main(args):
# load and preprocess dataset
if args.dataset == "cora":
data = CoraGraphDataset()
elif args.dataset == "citeseer":
data = CiteseerGraphDataset()
elif args.dataset == "pubmed":
data = PubmedGraphDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
if args.gpu < 0:
device = "/cpu:0"
else:
device = "/gpu:{}".format(args.gpu)
g = g.to(device)
with tf.device(device):
features = g.ndata["feat"]
labels = g.ndata["label"]
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
num_feats = features.shape[1]
n_classes = data.num_classes
n_edges = g.number_of_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
train_mask.numpy().sum(),
val_mask.numpy().sum(),
test_mask.numpy().sum(),
)
)
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
n_edges = g.number_of_edges()
# create model
heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
model = GAT(
g,
args.num_layers,
num_feats,
args.num_hidden,
n_classes,
heads,
tf.nn.elu,
args.in_drop,
args.attn_drop,
args.negative_slope,
args.residual,
)
print(model)
if args.early_stop:
stopper = EarlyStopping(patience=100)
# loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
# from_logits=False)
loss_fcn = tf.nn.sparse_softmax_cross_entropy_with_logits
# use optimizer
optimizer = tf.keras.optimizers.Adam(
learning_rate=args.lr, epsilon=1e-8
)
# initialize graph
dur = []
for epoch in range(args.epochs):
if epoch >= 3:
t0 = time.time()
# forward
with tf.GradientTape() as tape:
tape.watch(model.trainable_weights)
logits = model(features, training=True)
loss_value = tf.reduce_mean(
loss_fcn(
labels=labels[train_mask], logits=logits[train_mask]
)
)
# Manually Weight Decay
# We found Tensorflow has a different implementation on weight decay
# of Adam(W) optimizer with PyTorch. And this results in worse results.
# Manually adding weights to the loss to do weight decay solves this problem.
for weight in model.trainable_weights:
loss_value = loss_value + args.weight_decay * tf.nn.l2_loss(
weight
)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
if epoch >= 3:
dur.append(time.time() - t0)
train_acc = accuracy(logits[train_mask], labels[train_mask])
if args.fastmode:
val_acc = accuracy(logits[val_mask], labels[val_mask])
else:
val_acc = evaluate(model, features, labels, val_mask)
if args.early_stop:
if stopper.step(val_acc, model):
break
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
" ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss_value.numpy().item(),
train_acc,
val_acc,
n_edges / np.mean(dur) / 1000,
)
)
print()
if args.early_stop:
model.load_weights("es_checkpoint.pb")
acc = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GAT")
register_data_args(parser)
parser.add_argument(
"--gpu",
type=int,
default=-1,
help="which GPU to use. Set -1 to use CPU.",
)
parser.add_argument(
"--epochs", type=int, default=200, help="number of training epochs"
)
parser.add_argument(
"--num-heads",
type=int,
default=8,
help="number of hidden attention heads",
)
parser.add_argument(
"--num-out-heads",
type=int,
default=1,
help="number of output attention heads",
)
parser.add_argument(
"--num-layers", type=int, default=1, help="number of hidden layers"
)
parser.add_argument(
"--num-hidden", type=int, default=8, help="number of hidden units"
)
parser.add_argument(
"--residual",
action="store_true",
default=False,
help="use residual connection",
)
parser.add_argument(
"--in-drop", type=float, default=0.6, help="input feature dropout"
)
parser.add_argument(
"--attn-drop", type=float, default=0.6, help="attention dropout"
)
parser.add_argument("--lr", type=float, default=0.005, help="learning rate")
parser.add_argument(
"--weight-decay", type=float, default=5e-4, help="weight decay"
)
parser.add_argument(
"--negative-slope",
type=float,
default=0.2,
help="the negative slope of leaky relu",
)
parser.add_argument(
"--early-stop",
action="store_true",
default=False,
help="indicates whether to use early stop or not",
)
parser.add_argument(
"--fastmode",
action="store_true",
default=False,
help="skip re-evaluate the validation set",
)
args = parser.parse_args()
print(args)
main(args)