forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgat.py
85 lines (81 loc) · 2.2 KB
/
gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
Graph Attention Networks in DGL using SPMV optimization.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""
import dgl.function as fn
import tensorflow as tf
from dgl.nn import GATConv
from tensorflow.keras import layers
class GAT(tf.keras.Model):
def __init__(
self,
g,
num_layers,
in_dim,
num_hidden,
num_classes,
heads,
activation,
feat_drop,
attn_drop,
negative_slope,
residual,
):
super(GAT, self).__init__()
self.g = g
self.num_layers = num_layers
self.gat_layers = []
self.activation = activation
# input projection (no residual)
self.gat_layers.append(
GATConv(
in_dim,
num_hidden,
heads[0],
feat_drop,
attn_drop,
negative_slope,
False,
self.activation,
)
)
# hidden layers
for l in range(1, num_layers):
# due to multi-head, the in_dim = num_hidden * num_heads
self.gat_layers.append(
GATConv(
num_hidden * heads[l - 1],
num_hidden,
heads[l],
feat_drop,
attn_drop,
negative_slope,
residual,
self.activation,
)
)
# output projection
self.gat_layers.append(
GATConv(
num_hidden * heads[-2],
num_classes,
heads[-1],
feat_drop,
attn_drop,
negative_slope,
residual,
None,
)
)
def call(self, inputs):
h = inputs
for l in range(self.num_layers):
h = self.gat_layers[l](self.g, h)
h = tf.reshape(h, (h.shape[0], -1))
# output projection
logits = tf.reduce_mean(self.gat_layers[-1](self.g, h), axis=1)
return logits