forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
42 lines (36 loc) · 1.41 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import dgl
import numpy as np
import torch
def load_dataset(name):
dataset = name.lower()
if dataset == "amazon":
from ogb.nodeproppred.dataset_dgl import DglNodePropPredDataset
dataset = DglNodePropPredDataset(name="ogbn-products")
splitted_idx = dataset.get_idx_split()
train_nid = splitted_idx["train"]
val_nid = splitted_idx["valid"]
test_nid = splitted_idx["test"]
g, labels = dataset[0]
n_classes = int(labels.max() - labels.min() + 1)
g.ndata["label"] = labels.squeeze()
g.ndata["feat"] = g.ndata["feat"].float()
elif dataset in ["reddit", "cora"]:
if dataset == "reddit":
from dgl.data import RedditDataset
data = RedditDataset(self_loop=True)
g = data[0]
else:
from dgl.data import CitationGraphDataset
data = CitationGraphDataset("cora")
g = data[0]
n_classes = data.num_classes
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
train_nid = torch.LongTensor(train_mask.nonzero().squeeze())
val_nid = torch.LongTensor(val_mask.nonzero().squeeze())
test_nid = torch.LongTensor(test_mask.nonzero().squeeze())
else:
print("Dataset {} is not supported".format(name))
assert 0
return g, n_classes, train_nid, val_nid, test_nid