forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
247 lines (217 loc) · 7.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import argparse
import json
import logging
import os
from time import time
import dgl
import torch
import torch.nn
import torch.nn.functional as F
from dgl.data import LegacyTUDataset
from dgl.dataloading import GraphDataLoader
from network import get_sag_network
from torch.utils.data import random_split
from utils import get_stats
def parse_args():
parser = argparse.ArgumentParser(description="Self-Attention Graph Pooling")
parser.add_argument(
"--dataset",
type=str,
default="DD",
choices=["DD", "PROTEINS", "NCI1", "NCI109", "Mutagenicity"],
help="DD/PROTEINS/NCI1/NCI109/Mutagenicity",
)
parser.add_argument(
"--batch_size", type=int, default=128, help="batch size"
)
parser.add_argument("--lr", type=float, default=5e-4, help="learning rate")
parser.add_argument(
"--weight_decay", type=float, default=1e-4, help="weight decay"
)
parser.add_argument(
"--pool_ratio", type=float, default=0.5, help="pooling ratio"
)
parser.add_argument("--hid_dim", type=int, default=128, help="hidden size")
parser.add_argument(
"--dropout", type=float, default=0.5, help="dropout ratio"
)
parser.add_argument(
"--epochs",
type=int,
default=100000,
help="max number of training epochs",
)
parser.add_argument(
"--patience", type=int, default=50, help="patience for early stopping"
)
parser.add_argument(
"--device", type=int, default=-1, help="device id, -1 for cpu"
)
parser.add_argument(
"--architecture",
type=str,
default="hierarchical",
choices=["hierarchical", "global"],
help="model architecture",
)
parser.add_argument(
"--dataset_path", type=str, default="./dataset", help="path to dataset"
)
parser.add_argument(
"--conv_layers", type=int, default=3, help="number of conv layers"
)
parser.add_argument(
"--print_every",
type=int,
default=10,
help="print trainlog every k epochs, -1 for silent training",
)
parser.add_argument(
"--num_trials", type=int, default=1, help="number of trials"
)
parser.add_argument("--output_path", type=str, default="./output")
args = parser.parse_args()
# device
args.device = "cpu" if args.device == -1 else "cuda:{}".format(args.device)
if not torch.cuda.is_available():
logging.warning("CUDA is not available, use CPU for training.")
args.device = "cpu"
# print every
if args.print_every == -1:
args.print_every = args.epochs + 1
# paths
if not os.path.exists(args.dataset_path):
os.makedirs(args.dataset_path)
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
name = "Data={}_Hidden={}_Arch={}_Pool={}_WeightDecay={}_Lr={}.log".format(
args.dataset,
args.hid_dim,
args.architecture,
args.pool_ratio,
args.weight_decay,
args.lr,
)
args.output_path = os.path.join(args.output_path, name)
return args
def train(model: torch.nn.Module, optimizer, trainloader, device):
model.train()
total_loss = 0.0
num_batches = len(trainloader)
for batch in trainloader:
optimizer.zero_grad()
batch_graphs, batch_labels = batch
batch_graphs = batch_graphs.to(device)
batch_labels = batch_labels.long().to(device)
out = model(batch_graphs)
loss = F.nll_loss(out, batch_labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / num_batches
@torch.no_grad()
def test(model: torch.nn.Module, loader, device):
model.eval()
correct = 0.0
loss = 0.0
num_graphs = 0
for batch in loader:
batch_graphs, batch_labels = batch
num_graphs += batch_labels.size(0)
batch_graphs = batch_graphs.to(device)
batch_labels = batch_labels.long().to(device)
out = model(batch_graphs)
pred = out.argmax(dim=1)
loss += F.nll_loss(out, batch_labels, reduction="sum").item()
correct += pred.eq(batch_labels).sum().item()
return correct / num_graphs, loss / num_graphs
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
dataset = LegacyTUDataset(args.dataset, raw_dir=args.dataset_path)
# add self loop. We add self loop for each graph here since the function "add_self_loop" does not
# support batch graph.
for i in range(len(dataset)):
dataset.graph_lists[i] = dgl.add_self_loop(dataset.graph_lists[i])
num_training = int(len(dataset) * 0.8)
num_val = int(len(dataset) * 0.1)
num_test = len(dataset) - num_val - num_training
train_set, val_set, test_set = random_split(
dataset, [num_training, num_val, num_test]
)
train_loader = GraphDataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=6
)
val_loader = GraphDataLoader(
val_set, batch_size=args.batch_size, num_workers=2
)
test_loader = GraphDataLoader(
test_set, batch_size=args.batch_size, num_workers=2
)
device = torch.device(args.device)
# Step 2: Create model =================================================================== #
num_feature, num_classes, _ = dataset.statistics()
model_op = get_sag_network(args.architecture)
model = model_op(
in_dim=num_feature,
hid_dim=args.hid_dim,
out_dim=num_classes,
num_convs=args.conv_layers,
pool_ratio=args.pool_ratio,
dropout=args.dropout,
).to(device)
args.num_feature = int(num_feature)
args.num_classes = int(num_classes)
# Step 3: Create training components ===================================================== #
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
# Step 4: training epoches =============================================================== #
bad_cound = 0
best_val_loss = float("inf")
final_test_acc = 0.0
best_epoch = 0
train_times = []
for e in range(args.epochs):
s_time = time()
train_loss = train(model, optimizer, train_loader, device)
train_times.append(time() - s_time)
val_acc, val_loss = test(model, val_loader, device)
test_acc, _ = test(model, test_loader, device)
if best_val_loss > val_loss:
best_val_loss = val_loss
final_test_acc = test_acc
bad_cound = 0
best_epoch = e + 1
else:
bad_cound += 1
if bad_cound >= args.patience:
break
if (e + 1) % args.print_every == 0:
log_format = (
"Epoch {}: loss={:.4f}, val_acc={:.4f}, final_test_acc={:.4f}"
)
print(log_format.format(e + 1, train_loss, val_acc, final_test_acc))
print(
"Best Epoch {}, final test acc {:.4f}".format(
best_epoch, final_test_acc
)
)
return final_test_acc, sum(train_times) / len(train_times)
if __name__ == "__main__":
args = parse_args()
res = []
train_times = []
for i in range(args.num_trials):
print("Trial {}/{}".format(i + 1, args.num_trials))
acc, train_time = main(args)
res.append(acc)
train_times.append(train_time)
mean, err_bd = get_stats(res)
print("mean acc: {:.4f}, error bound: {:.4f}".format(mean, err_bd))
out_dict = {
"hyper-parameters": vars(args),
"result": "{:.4f}(+-{:.4f})".format(mean, err_bd),
"train_time": "{:.4f}".format(sum(train_times) / len(train_times)),
}
with open(args.output_path, "w") as f:
json.dump(out_dict, f, sort_keys=True, indent=4)