forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShapeNet.py
161 lines (143 loc) · 5.58 KB
/
ShapeNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import json
import os
from zipfile import ZipFile
import dgl
import numpy as np
import tqdm
from dgl.data.utils import download, get_download_dir
from scipy.sparse import csr_matrix
from torch.utils.data import Dataset
class ShapeNet(object):
def __init__(self, num_points=2048, normal_channel=True):
self.num_points = num_points
self.normal_channel = normal_channel
SHAPENET_DOWNLOAD_URL = "https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip"
download_path = get_download_dir()
data_filename = (
"shapenetcore_partanno_segmentation_benchmark_v0_normal.zip"
)
data_path = os.path.join(
download_path,
"shapenetcore_partanno_segmentation_benchmark_v0_normal",
)
if not os.path.exists(data_path):
local_path = os.path.join(download_path, data_filename)
if not os.path.exists(local_path):
download(SHAPENET_DOWNLOAD_URL, local_path, verify_ssl=False)
with ZipFile(local_path) as z:
z.extractall(path=download_path)
synset_file = "synsetoffset2category.txt"
with open(os.path.join(data_path, synset_file)) as f:
synset = [t.split("\n")[0].split("\t") for t in f.readlines()]
self.synset_dict = {}
for syn in synset:
self.synset_dict[syn[1]] = syn[0]
self.seg_classes = {
"Airplane": [0, 1, 2, 3],
"Bag": [4, 5],
"Cap": [6, 7],
"Car": [8, 9, 10, 11],
"Chair": [12, 13, 14, 15],
"Earphone": [16, 17, 18],
"Guitar": [19, 20, 21],
"Knife": [22, 23],
"Lamp": [24, 25, 26, 27],
"Laptop": [28, 29],
"Motorbike": [30, 31, 32, 33, 34, 35],
"Mug": [36, 37],
"Pistol": [38, 39, 40],
"Rocket": [41, 42, 43],
"Skateboard": [44, 45, 46],
"Table": [47, 48, 49],
}
train_split_json = "shuffled_train_file_list.json"
val_split_json = "shuffled_val_file_list.json"
test_split_json = "shuffled_test_file_list.json"
split_path = os.path.join(data_path, "train_test_split")
with open(os.path.join(split_path, train_split_json)) as f:
tmp = f.read()
self.train_file_list = [
os.path.join(data_path, t.replace("shape_data/", "") + ".txt")
for t in json.loads(tmp)
]
with open(os.path.join(split_path, val_split_json)) as f:
tmp = f.read()
self.val_file_list = [
os.path.join(data_path, t.replace("shape_data/", "") + ".txt")
for t in json.loads(tmp)
]
with open(os.path.join(split_path, test_split_json)) as f:
tmp = f.read()
self.test_file_list = [
os.path.join(data_path, t.replace("shape_data/", "") + ".txt")
for t in json.loads(tmp)
]
def train(self):
return ShapeNetDataset(
self, "train", self.num_points, self.normal_channel
)
def valid(self):
return ShapeNetDataset(
self, "valid", self.num_points, self.normal_channel
)
def trainval(self):
return ShapeNetDataset(
self, "trainval", self.num_points, self.normal_channel
)
def test(self):
return ShapeNetDataset(
self, "test", self.num_points, self.normal_channel
)
class ShapeNetDataset(Dataset):
def __init__(self, shapenet, mode, num_points, normal_channel=True):
super(ShapeNetDataset, self).__init__()
self.mode = mode
self.num_points = num_points
if not normal_channel:
self.dim = 3
else:
self.dim = 6
if mode == "train":
self.file_list = shapenet.train_file_list
elif mode == "valid":
self.file_list = shapenet.val_file_list
elif mode == "test":
self.file_list = shapenet.test_file_list
elif mode == "trainval":
self.file_list = shapenet.train_file_list + shapenet.val_file_list
else:
raise "Not supported `mode`"
data_list = []
label_list = []
category_list = []
print("Loading data from split " + self.mode)
for fn in tqdm.tqdm(self.file_list, ascii=True):
with open(fn) as f:
data = np.array(
[t.split("\n")[0].split(" ") for t in f.readlines()]
).astype(float)
data_list.append(data[:, 0 : self.dim])
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split("/")[-2]])
self.data = data_list
self.label = label_list
self.category = category_list
def translate(self, x, scale=(2 / 3, 3 / 2), shift=(-0.2, 0.2), size=3):
xyz1 = np.random.uniform(low=scale[0], high=scale[1], size=[size])
xyz2 = np.random.uniform(low=shift[0], high=shift[1], size=[size])
x = np.add(np.multiply(x, xyz1), xyz2).astype("float32")
return x
def __len__(self):
return len(self.data)
def __getitem__(self, i):
inds = np.random.choice(
self.data[i].shape[0], self.num_points, replace=True
)
x = self.data[i][inds, : self.dim]
y = self.label[i][inds]
cat = self.category[i]
if self.mode == "train":
x = self.translate(x, size=self.dim)
x = x.astype(float)
y = y.astype(int)
return x, y, cat