forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cls.py
193 lines (165 loc) · 5.75 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import os
import time
from functools import partial
import provider
import torch
import torch.nn as nn
import tqdm
from dgl.data.utils import download, get_download_dir
from ModelNetDataLoader import ModelNetDataLoader
from point_transformer import PointTransformerCLS
from torch.utils.data import DataLoader
torch.backends.cudnn.enabled = False
parser = argparse.ArgumentParser()
parser.add_argument("--dataset-path", type=str, default="")
parser.add_argument("--load-model-path", type=str, default="")
parser.add_argument("--save-model-path", type=str, default="")
parser.add_argument("--num-epochs", type=int, default=200)
parser.add_argument("--num-workers", type=int, default=8)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--opt", type=str, default="adam")
args = parser.parse_args()
num_workers = args.num_workers
batch_size = args.batch_size
data_filename = "modelnet40_normal_resampled.zip"
download_path = os.path.join(get_download_dir(), data_filename)
local_path = args.dataset_path or os.path.join(
get_download_dir(), "modelnet40_normal_resampled"
)
if not os.path.exists(local_path):
download(
"https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip",
download_path,
verify_ssl=False,
)
from zipfile import ZipFile
with ZipFile(download_path) as z:
z.extractall(path=get_download_dir())
CustomDataLoader = partial(
DataLoader,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=True,
)
def train(net, opt, scheduler, train_loader, dev):
net.train()
total_loss = 0
num_batches = 0
total_correct = 0
count = 0
loss_f = nn.CrossEntropyLoss()
start_time = time.time()
with tqdm.tqdm(train_loader, ascii=True) as tq:
for data, label in tq:
data = data.data.numpy()
data = provider.random_point_dropout(data)
data[:, :, 0:3] = provider.random_scale_point_cloud(data[:, :, 0:3])
data[:, :, 0:3] = provider.jitter_point_cloud(data[:, :, 0:3])
data[:, :, 0:3] = provider.shift_point_cloud(data[:, :, 0:3])
data = torch.tensor(data)
label = label[:, 0]
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
opt.zero_grad()
logits = net(data)
loss = loss_f(logits, label)
loss.backward()
opt.step()
_, preds = logits.max(1)
num_batches += 1
count += num_examples
loss = loss.item()
correct = (preds == label).sum().item()
total_loss += loss
total_correct += correct
tq.set_postfix(
{
"AvgLoss": "%.5f" % (total_loss / num_batches),
"AvgAcc": "%.5f" % (total_correct / count),
}
)
print(
"[Train] AvgLoss: {:.5}, AvgAcc: {:.5}, Time: {:.5}s".format(
total_loss / num_batches,
total_correct / count,
time.time() - start_time,
)
)
scheduler.step()
def evaluate(net, test_loader, dev):
net.eval()
total_correct = 0
count = 0
start_time = time.time()
with torch.no_grad():
with tqdm.tqdm(test_loader, ascii=True) as tq:
for data, label in tq:
label = label[:, 0]
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
logits = net(data)
_, preds = logits.max(1)
correct = (preds == label).sum().item()
total_correct += correct
count += num_examples
tq.set_postfix({"AvgAcc": "%.5f" % (total_correct / count)})
print(
"[Test] AvgAcc: {:.5}, Time: {:.5}s".format(
total_correct / count, time.time() - start_time
)
)
return total_correct / count
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = PointTransformerCLS(40, batch_size, feature_dim=6)
net = net.to(dev)
if args.load_model_path:
net.load_state_dict(torch.load(args.load_model_path, map_location=dev))
if args.opt == "sgd":
# The optimizer strategy described in paper:
opt = torch.optim.SGD(
net.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
opt, milestones=[120, 160], gamma=0.1
)
elif args.opt == "adam":
# The optimizer strategy proposed by
# https://github.com/qq456cvb/Point-Transformers:
opt = torch.optim.Adam(
net.parameters(),
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-4,
)
scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=50, gamma=0.3)
train_dataset = ModelNetDataLoader(local_path, 1024, split="train")
test_dataset = ModelNetDataLoader(local_path, 1024, split="test")
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
drop_last=True,
)
best_test_acc = 0
for epoch in range(args.num_epochs):
print("Epoch #{}: ".format(epoch))
train(net, opt, scheduler, train_loader, dev)
if (epoch + 1) % 1 == 0:
test_acc = evaluate(net, test_loader, dev)
if test_acc > best_test_acc:
best_test_acc = test_acc
if args.save_model_path:
torch.save(net.state_dict(), args.save_model_path)
print("Current test acc: %.5f (best: %.5f)" % (test_acc, best_test_acc))
print()