forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreading_data.py
240 lines (205 loc) · 7.01 KB
/
reading_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import pickle
import random
import time
import dgl
import numpy as np
import scipy.sparse as sp
import torch
from dgl.data.utils import (
_get_dgl_url,
download,
extract_archive,
get_download_dir,
)
from torch.utils.data import DataLoader
def ReadTxtNet(file_path="", undirected=True):
"""Read the txt network file.
Notations: The network is unweighted.
Parameters
----------
file_path str : path of network file
undirected bool : whether the edges are undirected
Return
------
net dict : a dict recording the connections in the graph
node2id dict : a dict mapping the nodes to their embedding indices
id2node dict : a dict mapping nodes embedding indices to the nodes
"""
if file_path == "youtube" or file_path == "blog":
name = file_path
dir = get_download_dir()
zip_file_path = "{}/{}.zip".format(dir, name)
download(
_get_dgl_url(
os.path.join("dataset/DeepWalk/", "{}.zip".format(file_path))
),
path=zip_file_path,
)
extract_archive(zip_file_path, "{}/{}".format(dir, name))
file_path = "{}/{}/{}-net.txt".format(dir, name, name)
node2id = {}
id2node = {}
cid = 0
src = []
dst = []
weight = []
net = {}
with open(file_path, "r") as f:
for line in f.readlines():
tup = list(map(int, line.strip().split(" ")))
assert len(tup) in [
2,
3,
], "The format of network file is unrecognizable."
if len(tup) == 3:
n1, n2, w = tup
elif len(tup) == 2:
n1, n2 = tup
w = 1
if n1 not in node2id:
node2id[n1] = cid
id2node[cid] = n1
cid += 1
if n2 not in node2id:
node2id[n2] = cid
id2node[cid] = n2
cid += 1
n1 = node2id[n1]
n2 = node2id[n2]
if n1 not in net:
net[n1] = {n2: w}
src.append(n1)
dst.append(n2)
weight.append(w)
elif n2 not in net[n1]:
net[n1][n2] = w
src.append(n1)
dst.append(n2)
weight.append(w)
if undirected:
if n2 not in net:
net[n2] = {n1: w}
src.append(n2)
dst.append(n1)
weight.append(w)
elif n1 not in net[n2]:
net[n2][n1] = w
src.append(n2)
dst.append(n1)
weight.append(w)
print("node num: %d" % len(net))
print("edge num: %d" % len(src))
assert max(net.keys()) == len(net) - 1, "error reading net, quit"
sm = sp.coo_matrix((np.array(weight), (src, dst)), dtype=np.float32)
return net, node2id, id2node, sm
def net2graph(net_sm):
"""Transform the network to DGL graph
Return
------
G DGLGraph : graph by DGL
"""
start = time.time()
G = dgl.DGLGraph(net_sm)
end = time.time()
t = end - start
print("Building DGLGraph in %.2fs" % t)
return G
def make_undirected(G):
G.add_edges(G.edges()[1], G.edges()[0])
return G
def find_connected_nodes(G):
nodes = torch.nonzero(G.out_degrees(), as_tuple=False).squeeze(-1)
return nodes
class LineDataset:
def __init__(
self,
net_file,
batch_size,
num_samples,
negative=5,
gpus=[0],
fast_neg=True,
ogbl_name="",
load_from_ogbl=False,
ogbn_name="",
load_from_ogbn=False,
):
"""This class has the following functions:
1. Transform the txt network file into DGL graph;
2. Generate random walk sequences for the trainer;
3. Provide the negative table if the user hopes to sample negative
nodes according to nodes' degrees;
Parameter
---------
net_file str : path of the dgl network file
walk_length int : number of nodes in a sequence
window_size int : context window size
num_walks int : number of walks for each node
batch_size int : number of node sequences in each batch
negative int : negative samples for each positve node pair
fast_neg bool : whether do negative sampling inside a batch
"""
self.batch_size = batch_size
self.negative = negative
self.num_samples = num_samples
self.num_procs = len(gpus)
self.fast_neg = fast_neg
if load_from_ogbl:
assert (
len(gpus) == 1
), "ogb.linkproppred is not compatible with multi-gpu training."
from load_dataset import load_from_ogbl_with_name
self.G = load_from_ogbl_with_name(ogbl_name)
elif load_from_ogbn:
assert (
len(gpus) == 1
), "ogb.linkproppred is not compatible with multi-gpu training."
from load_dataset import load_from_ogbn_with_name
self.G = load_from_ogbn_with_name(ogbn_name)
else:
self.G = dgl.load_graphs(net_file)[0][0]
self.G = make_undirected(self.G)
print("Finish reading graph")
self.num_nodes = self.G.num_nodes()
start = time.time()
seeds = np.random.choice(
np.arange(self.G.num_edges()), self.num_samples, replace=True
) # edge index
self.seeds = torch.split(
torch.LongTensor(seeds),
int(np.ceil(self.num_samples / self.num_procs)),
0,
)
end = time.time()
t = end - start
print("generate %d samples in %.2fs" % (len(seeds), t))
# negative table for true negative sampling
self.valid_nodes = find_connected_nodes(self.G)
if not fast_neg:
node_degree = self.G.out_degrees(self.valid_nodes).numpy()
node_degree = np.power(node_degree, 0.75)
node_degree /= np.sum(node_degree)
node_degree = np.array(node_degree * 1e8, dtype=int)
self.neg_table = []
for idx, node in enumerate(self.valid_nodes):
self.neg_table += [node] * node_degree[idx]
self.neg_table_size = len(self.neg_table)
self.neg_table = np.array(self.neg_table, dtype=int)
del node_degree
def create_sampler(self, i):
"""create random walk sampler"""
return EdgeSampler(self.G, self.seeds[i])
def save_mapping(self, map_file):
with open(map_file, "wb") as f:
pickle.dump(self.node2id, f)
class EdgeSampler(object):
def __init__(self, G, seeds):
self.G = G
self.seeds = seeds
self.edges = torch.cat(
(self.G.edges()[0].unsqueeze(0), self.G.edges()[1].unsqueeze(0)), 0
).t()
def sample(self, seeds):
"""seeds torch.LongTensor : a batch of indices of edges"""
return self.edges[torch.LongTensor(seeds)]