Skip to content

Latest commit

 

History

History
77 lines (67 loc) · 3.15 KB

README.md

File metadata and controls

77 lines (67 loc) · 3.15 KB

LINE Example

  • Paper link: here
  • Official implementation: here

This implementation includes both LINE-1st and LINE-2nd. The detailed usage is shown in the arguments in line.py.

How to load ogb data

To load ogb dataset, you need to run the following command, which will output a network file, ogbn-products-net.txt:

python3 load_dataset.py --name ogbn-proteins

Or you can run the code directly with:

python3 line.py --ogbn_name xxx --load_from_ogbn

However, ogb.nodeproppred might not be compatible with mixed training with multi-gpu. If you want to do mixed training, please use no more than 1 gpu by the command above. We leave the commands to run with multi-gpu at the end.

Evaluation

For evaluatation we follow the code mlp.py provided by ogb here.

Used config

ogbn-arxiv

python3 line.py --save_in_pt --dim 128 --lap_norm 0.1 --mix --gpus 0 --batch_size 1024 --output_emb_file arxiv-embedding.pt --num_samples 1000 --print_interval 1000 --negative 5 --fast_neg --load_from_ogbn --ogbn_name ogbn-arxiv
cd ./ogb/blob/master/examples/nodeproppred/arxiv
cp embedding_pt_file_path ./
python3 mlp.py --device 0 --use_node_embedding

ogbn-proteins

python3 line.py --save_in_pt --dim 128 --lap_norm 0.01 --mix --gpus 1 --batch_size 1024 --output_emb_file protein-embedding.pt --num_samples 600 --print_interval 1000 --negative 1 --fast_neg --load_from_ogbn --ogbn_name ogbn-proteins --print_loss
cd ./ogb/blob/master/examples/nodeproppred/proteins
cp embedding_pt_file_path ./
python3 mlp.py --device 0 --use_node_embedding

ogbl-products

python3 line.py --save_in_pt --dim 128 --lap_norm 0.01 --mix --gpus 0 --batch_size 4096 --output_emb_file products-embedding.pt --num_samples 3000 --print_interval 1000 --negative 1 --fast_neg --load_from_ogbn --ogbn_name ogbn-products --print_loss
cd ./ogb/blob/master/examples/nodeproppred/products
cp embedding_pt_file_path ./
python3 mlp.py --device 0 --use_node_embedding

Results

ogbn-arxiv
#params: 33023343(model) + 142888(mlp) = 33166231
Highest Train: 82.94 ± 0.11
Highest Valid: 71.76 ± 0.08
Final Train: 80.74 ± 1.30
Final Test: 70.47 ± 0.19


obgn-proteins
#params: 25853524(model) + 129648(mlp) = 25983172
Highest Train: 93.11 ± 0.04
Highest Valid: 70.50 ± 1.29
Final Train: 77.66 ± 10.27
Final Test: 62.07 ± 1.25


ogbn-products
#params: 477570049(model) + 136495(mlp) = 477706544
Highest Train: 98.01 ± 0.32
Highest Valid: 89.57 ± 0.09
Final Train: 94.96 ± 0.43
Final Test: 72.52 ± 0.29

Notes

To utlize multi-GPU training, we need to load datasets as a local file before training by the following command:

python3 load_dataset.py --name dataset_name

where dataset_name can be ogbn-arxiv, ogbn-proteins, and ogbn-products. After that, a local file $dataset_name$-graph.bin will be generated. Then run:

python3 line.py --data_file $dataset_name$-graph.bin

where the other parameters are the same with used configs without using --load_from_ogbn and --ogbn_name.