forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
587 lines (509 loc) · 21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import random
import numpy as np
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from torch.multiprocessing import Queue
from torch.nn import init
def init_emb2pos_index(walk_length, window_size, batch_size):
"""select embedding of positive nodes from a batch of node embeddings
Return
------
index_emb_posu torch.LongTensor : the indices of u_embeddings
index_emb_posv torch.LongTensor : the indices of v_embeddings
Usage
-----
# emb_u.shape: [batch_size * walk_length, dim]
batch_emb2posu = torch.index_select(emb_u, 0, index_emb_posu)
"""
idx_list_u = []
idx_list_v = []
for b in range(batch_size):
for i in range(walk_length):
for j in range(i - window_size, i):
if j >= 0:
idx_list_u.append(j + b * walk_length)
idx_list_v.append(i + b * walk_length)
for j in range(i + 1, i + 1 + window_size):
if j < walk_length:
idx_list_u.append(j + b * walk_length)
idx_list_v.append(i + b * walk_length)
# [num_pos * batch_size]
index_emb_posu = torch.LongTensor(idx_list_u)
index_emb_posv = torch.LongTensor(idx_list_v)
return index_emb_posu, index_emb_posv
def init_emb2neg_index(walk_length, window_size, negative, batch_size):
"""select embedding of negative nodes from a batch of node embeddings
for fast negative sampling
Return
------
index_emb_negu torch.LongTensor : the indices of u_embeddings
index_emb_negv torch.LongTensor : the indices of v_embeddings
Usage
-----
# emb_u.shape: [batch_size * walk_length, dim]
batch_emb2negu = torch.index_select(emb_u, 0, index_emb_negu)
"""
idx_list_u = []
for b in range(batch_size):
for i in range(walk_length):
for j in range(i - window_size, i):
if j >= 0:
idx_list_u += [i + b * walk_length] * negative
for j in range(i + 1, i + 1 + window_size):
if j < walk_length:
idx_list_u += [i + b * walk_length] * negative
idx_list_v = (
list(range(batch_size * walk_length)) * negative * window_size * 2
)
random.shuffle(idx_list_v)
idx_list_v = idx_list_v[: len(idx_list_u)]
# [bs * walk_length * negative]
index_emb_negu = torch.LongTensor(idx_list_u)
index_emb_negv = torch.LongTensor(idx_list_v)
return index_emb_negu, index_emb_negv
def init_weight(walk_length, window_size, batch_size):
"""init context weight"""
weight = []
for b in range(batch_size):
for i in range(walk_length):
for j in range(i - window_size, i):
if j >= 0:
weight.append(1.0 - float(i - j - 1) / float(window_size))
for j in range(i + 1, i + 1 + window_size):
if j < walk_length:
weight.append(1.0 - float(j - i - 1) / float(window_size))
# [num_pos * batch_size]
return torch.Tensor(weight).unsqueeze(1)
def init_empty_grad(emb_dimension, walk_length, batch_size):
"""initialize gradient matrix"""
grad_u = torch.zeros((batch_size * walk_length, emb_dimension))
grad_v = torch.zeros((batch_size * walk_length, emb_dimension))
return grad_u, grad_v
def adam(grad, state_sum, nodes, lr, device, only_gpu):
"""calculate gradients according to adam"""
grad_sum = (grad * grad).mean(1)
if not only_gpu:
grad_sum = grad_sum.cpu()
state_sum.index_add_(0, nodes, grad_sum) # cpu
std = state_sum[nodes].to(device) # gpu
std_values = std.sqrt_().add_(1e-10).unsqueeze(1)
grad = lr * grad / std_values # gpu
return grad
def async_update(num_threads, model, queue):
"""asynchronous embedding update"""
torch.set_num_threads(num_threads)
while True:
(grad_u, grad_v, grad_v_neg, nodes, neg_nodes) = queue.get()
if grad_u is None:
return
with torch.no_grad():
model.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
model.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)
if neg_nodes is not None:
model.v_embeddings.weight.data.index_add_(
0, neg_nodes.view(-1), grad_v_neg
)
class SkipGramModel(nn.Module):
"""Negative sampling based skip-gram"""
def __init__(
self,
emb_size,
emb_dimension,
walk_length,
window_size,
batch_size,
only_cpu,
only_gpu,
mix,
neg_weight,
negative,
lr,
lap_norm,
fast_neg,
record_loss,
norm,
use_context_weight,
async_update,
num_threads,
):
"""initialize embedding on CPU
Paremeters
----------
emb_size int : number of nodes
emb_dimension int : embedding dimension
walk_length int : number of nodes in a sequence
window_size int : context window size
batch_size int : number of node sequences in each batch
only_cpu bool : training with CPU
only_gpu bool : training with GPU
mix bool : mixed training with CPU and GPU
negative int : negative samples for each positve node pair
neg_weight float : negative weight
lr float : initial learning rate
lap_norm float : weight of laplacian normalization
fast_neg bool : do negative sampling inside a batch
record_loss bool : print the loss during training
norm bool : do normalizatin on the embedding after training
use_context_weight : give different weights to the nodes in a context window
async_update : asynchronous training
"""
super(SkipGramModel, self).__init__()
self.emb_size = emb_size
self.emb_dimension = emb_dimension
self.walk_length = walk_length
self.window_size = window_size
self.batch_size = batch_size
self.only_cpu = only_cpu
self.only_gpu = only_gpu
self.mixed_train = mix
self.neg_weight = neg_weight
self.negative = negative
self.lr = lr
self.lap_norm = lap_norm
self.fast_neg = fast_neg
self.record_loss = record_loss
self.norm = norm
self.use_context_weight = use_context_weight
self.async_update = async_update
self.num_threads = num_threads
# initialize the device as cpu
self.device = torch.device("cpu")
# content embedding
self.u_embeddings = nn.Embedding(
self.emb_size, self.emb_dimension, sparse=True
)
# context embedding
self.v_embeddings = nn.Embedding(
self.emb_size, self.emb_dimension, sparse=True
)
# initialze embedding
initrange = 1.0 / self.emb_dimension
init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
init.constant_(self.v_embeddings.weight.data, 0)
# lookup_table is used for fast sigmoid computing
self.lookup_table = torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
self.lookup_table[0] = 0.0
self.lookup_table[-1] = 1.0
if self.record_loss:
self.logsigmoid_table = torch.log(
torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
)
self.loss = []
# indexes to select positive/negative node pairs from batch_walks
self.index_emb_posu, self.index_emb_posv = init_emb2pos_index(
self.walk_length, self.window_size, self.batch_size
)
self.index_emb_negu, self.index_emb_negv = init_emb2neg_index(
self.walk_length, self.window_size, self.negative, self.batch_size
)
if self.use_context_weight:
self.context_weight = init_weight(
self.walk_length, self.window_size, self.batch_size
)
# adam
self.state_sum_u = torch.zeros(self.emb_size)
self.state_sum_v = torch.zeros(self.emb_size)
# gradients of nodes in batch_walks
self.grad_u, self.grad_v = init_empty_grad(
self.emb_dimension, self.walk_length, self.batch_size
)
def create_async_update(self):
"""Set up the async update subprocess."""
self.async_q = Queue(1)
self.async_p = mp.Process(
target=async_update, args=(self.num_threads, self, self.async_q)
)
self.async_p.start()
def finish_async_update(self):
"""Notify the async update subprocess to quit."""
self.async_q.put((None, None, None, None, None))
self.async_p.join()
def share_memory(self):
"""share the parameters across subprocesses"""
self.u_embeddings.weight.share_memory_()
self.v_embeddings.weight.share_memory_()
self.state_sum_u.share_memory_()
self.state_sum_v.share_memory_()
def set_device(self, gpu_id):
"""set gpu device"""
self.device = torch.device("cuda:%d" % gpu_id)
print("The device is", self.device)
self.lookup_table = self.lookup_table.to(self.device)
if self.record_loss:
self.logsigmoid_table = self.logsigmoid_table.to(self.device)
self.index_emb_posu = self.index_emb_posu.to(self.device)
self.index_emb_posv = self.index_emb_posv.to(self.device)
self.index_emb_negu = self.index_emb_negu.to(self.device)
self.index_emb_negv = self.index_emb_negv.to(self.device)
self.grad_u = self.grad_u.to(self.device)
self.grad_v = self.grad_v.to(self.device)
if self.use_context_weight:
self.context_weight = self.context_weight.to(self.device)
def all_to_device(self, gpu_id):
"""move all of the parameters to a single GPU"""
self.device = torch.device("cuda:%d" % gpu_id)
self.set_device(gpu_id)
self.u_embeddings = self.u_embeddings.cuda(gpu_id)
self.v_embeddings = self.v_embeddings.cuda(gpu_id)
self.state_sum_u = self.state_sum_u.to(self.device)
self.state_sum_v = self.state_sum_v.to(self.device)
def fast_sigmoid(self, score):
"""do fast sigmoid by looking up in a pre-defined table"""
idx = torch.floor((score + 6.01) / 0.01).long()
return self.lookup_table[idx]
def fast_logsigmoid(self, score):
"""do fast logsigmoid by looking up in a pre-defined table"""
idx = torch.floor((score + 6.01) / 0.01).long()
return self.logsigmoid_table[idx]
def fast_learn(self, batch_walks, neg_nodes=None):
"""Learn a batch of random walks in a fast way. It has the following features:
1. It calculating the gradients directly without the forward operation.
2. It does sigmoid by a looking up table.
Specifically, for each positive/negative node pair (i,j), the updating procedure is as following:
score = self.fast_sigmoid(u_embedding[i].dot(v_embedding[j]))
# label = 1 for positive samples; label = 0 for negative samples.
u_embedding[i] += (label - score) * v_embedding[j]
v_embedding[i] += (label - score) * u_embedding[j]
Parameters
----------
batch_walks list : a list of node sequnces
lr float : current learning rate
neg_nodes torch.LongTensor : a long tensor of sampled true negative nodes. If neg_nodes is None,
then do negative sampling randomly from the nodes in batch_walks as an alternative.
Usage example
-------------
batch_walks = [torch.LongTensor([1,2,3,4]),
torch.LongTensor([2,3,4,2])])
lr = 0.01
neg_nodes = None
"""
lr = self.lr
# [batch_size, walk_length]
if isinstance(batch_walks, list):
nodes = torch.stack(batch_walks)
elif isinstance(batch_walks, torch.LongTensor):
nodes = batch_walks
if self.only_gpu:
nodes = nodes.to(self.device)
if neg_nodes is not None:
neg_nodes = neg_nodes.to(self.device)
emb_u = (
self.u_embeddings(nodes)
.view(-1, self.emb_dimension)
.to(self.device)
)
emb_v = (
self.v_embeddings(nodes)
.view(-1, self.emb_dimension)
.to(self.device)
)
## Postive
bs = len(batch_walks)
if bs < self.batch_size:
index_emb_posu, index_emb_posv = init_emb2pos_index(
self.walk_length, self.window_size, bs
)
index_emb_posu = index_emb_posu.to(self.device)
index_emb_posv = index_emb_posv.to(self.device)
else:
index_emb_posu = self.index_emb_posu
index_emb_posv = self.index_emb_posv
# num_pos: the number of positive node pairs generated by a single walk sequence
# [batch_size * num_pos, dim]
emb_pos_u = torch.index_select(emb_u, 0, index_emb_posu)
emb_pos_v = torch.index_select(emb_v, 0, index_emb_posv)
pos_score = torch.sum(torch.mul(emb_pos_u, emb_pos_v), dim=1)
pos_score = torch.clamp(pos_score, max=6, min=-6)
# [batch_size * num_pos, 1]
score = (1 - self.fast_sigmoid(pos_score)).unsqueeze(1)
if self.record_loss:
self.loss.append(torch.mean(self.fast_logsigmoid(pos_score)).item())
# [batch_size * num_pos, dim]
if self.lap_norm > 0:
grad_u_pos = score * emb_pos_v + self.lap_norm * (
emb_pos_v - emb_pos_u
)
grad_v_pos = score * emb_pos_u + self.lap_norm * (
emb_pos_u - emb_pos_v
)
else:
grad_u_pos = score * emb_pos_v
grad_v_pos = score * emb_pos_u
if self.use_context_weight:
if bs < self.batch_size:
context_weight = init_weight(
self.walk_length, self.window_size, bs
).to(self.device)
else:
context_weight = self.context_weight
grad_u_pos *= context_weight
grad_v_pos *= context_weight
# [batch_size * walk_length, dim]
if bs < self.batch_size:
grad_u, grad_v = init_empty_grad(
self.emb_dimension, self.walk_length, bs
)
grad_u = grad_u.to(self.device)
grad_v = grad_v.to(self.device)
else:
self.grad_u = self.grad_u.to(self.device)
self.grad_u.zero_()
self.grad_v = self.grad_v.to(self.device)
self.grad_v.zero_()
grad_u = self.grad_u
grad_v = self.grad_v
grad_u.index_add_(0, index_emb_posu, grad_u_pos)
grad_v.index_add_(0, index_emb_posv, grad_v_pos)
## Negative
if bs < self.batch_size:
index_emb_negu, index_emb_negv = init_emb2neg_index(
self.walk_length, self.window_size, self.negative, bs
)
index_emb_negu = index_emb_negu.to(self.device)
index_emb_negv = index_emb_negv.to(self.device)
else:
index_emb_negu = self.index_emb_negu
index_emb_negv = self.index_emb_negv
emb_neg_u = torch.index_select(emb_u, 0, index_emb_negu)
if neg_nodes is None:
emb_neg_v = torch.index_select(emb_v, 0, index_emb_negv)
else:
emb_neg_v = self.v_embeddings.weight[neg_nodes].to(self.device)
# [batch_size * walk_length * negative, dim]
neg_score = torch.sum(torch.mul(emb_neg_u, emb_neg_v), dim=1)
neg_score = torch.clamp(neg_score, max=6, min=-6)
# [batch_size * walk_length * negative, 1]
score = -self.fast_sigmoid(neg_score).unsqueeze(1)
if self.record_loss:
self.loss.append(
self.negative
* self.neg_weight
* torch.mean(self.fast_logsigmoid(-neg_score)).item()
)
grad_u_neg = self.neg_weight * score * emb_neg_v
grad_v_neg = self.neg_weight * score * emb_neg_u
grad_u.index_add_(0, index_emb_negu, grad_u_neg)
if neg_nodes is None:
grad_v.index_add_(0, index_emb_negv, grad_v_neg)
## Update
nodes = nodes.view(-1)
# use adam optimizer
grad_u = adam(
grad_u, self.state_sum_u, nodes, lr, self.device, self.only_gpu
)
grad_v = adam(
grad_v, self.state_sum_v, nodes, lr, self.device, self.only_gpu
)
if neg_nodes is not None:
grad_v_neg = adam(
grad_v_neg,
self.state_sum_v,
neg_nodes,
lr,
self.device,
self.only_gpu,
)
if self.mixed_train:
grad_u = grad_u.cpu()
grad_v = grad_v.cpu()
if neg_nodes is not None:
grad_v_neg = grad_v_neg.cpu()
else:
grad_v_neg = None
if self.async_update:
grad_u.share_memory_()
grad_v.share_memory_()
nodes.share_memory_()
if neg_nodes is not None:
neg_nodes.share_memory_()
grad_v_neg.share_memory_()
self.async_q.put((grad_u, grad_v, grad_v_neg, nodes, neg_nodes))
if not self.async_update:
self.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
self.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)
if neg_nodes is not None:
self.v_embeddings.weight.data.index_add_(
0, neg_nodes.view(-1), grad_v_neg
)
return
def forward(self, pos_u, pos_v, neg_v):
"""Do forward and backward. It is designed for future use."""
emb_u = self.u_embeddings(pos_u)
emb_v = self.v_embeddings(pos_v)
emb_neg_v = self.v_embeddings(neg_v)
score = torch.sum(torch.mul(emb_u, emb_v), dim=1)
score = torch.clamp(score, max=6, min=-6)
score = -F.logsigmoid(score)
neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze()
neg_score = torch.clamp(neg_score, max=6, min=-6)
neg_score = -torch.sum(F.logsigmoid(-neg_score), dim=1)
# return torch.mean(score + neg_score)
return torch.sum(score), torch.sum(neg_score)
def save_embedding(self, dataset, file_name):
"""Write embedding to local file. Only used when node ids are numbers.
Parameter
---------
dataset DeepwalkDataset : the dataset
file_name str : the file name
"""
embedding = self.u_embeddings.weight.cpu().data.numpy()
if self.norm:
embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(
-1, 1
)
np.save(file_name, embedding)
def save_embedding_pt(self, dataset, file_name):
"""For ogb leaderboard."""
try:
max_node_id = max(dataset.node2id.keys())
if max_node_id + 1 != self.emb_size:
print("WARNING: The node ids are not serial.")
embedding = torch.zeros(max_node_id + 1, self.emb_dimension)
index = torch.LongTensor(
list(
map(
lambda id: dataset.id2node[id],
list(range(self.emb_size)),
)
)
)
embedding.index_add_(0, index, self.u_embeddings.weight.cpu().data)
if self.norm:
embedding /= torch.sqrt(
torch.sum(embedding.mul(embedding), 1) + 1e-6
).unsqueeze(1)
torch.save(embedding, file_name)
except:
self.save_embedding_pt_dgl_graph(dataset, file_name)
def save_embedding_pt_dgl_graph(self, dataset, file_name):
"""For ogb leaderboard"""
embedding = torch.zeros_like(self.u_embeddings.weight.cpu().data)
valid_seeds = torch.LongTensor(dataset.valid_seeds)
valid_embedding = self.u_embeddings.weight.cpu().data.index_select(
0, valid_seeds
)
embedding.index_add_(0, valid_seeds, valid_embedding)
if self.norm:
embedding /= torch.sqrt(
torch.sum(embedding.mul(embedding), 1) + 1e-6
).unsqueeze(1)
torch.save(embedding, file_name)
def save_embedding_txt(self, dataset, file_name):
"""Write embedding to local file. For future use.
Parameter
---------
dataset DeepwalkDataset : the dataset
file_name str : the file name
"""
embedding = self.u_embeddings.weight.cpu().data.numpy()
if self.norm:
embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(
-1, 1
)
with open(file_name, "w") as f:
f.write("%d %d\n" % (self.emb_size, self.emb_dimension))
for wid in range(self.emb_size):
e = " ".join(map(lambda x: str(x), embedding[wid]))
f.write("%s %s\n" % (str(dataset.id2node[wid]), e))