forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcitation.py
197 lines (174 loc) · 5.42 KB
/
citation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import time
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import load_data, register_data_args
from dgl.nn.pytorch.conv import GMMConv
class MoNet(nn.Module):
def __init__(
self,
g,
in_feats,
n_hidden,
out_feats,
n_layers,
dim,
n_kernels,
dropout,
):
super(MoNet, self).__init__()
self.g = g
self.layers = nn.ModuleList()
self.pseudo_proj = nn.ModuleList()
# Input layer
self.layers.append(GMMConv(in_feats, n_hidden, dim, n_kernels))
self.pseudo_proj.append(nn.Sequential(nn.Linear(2, dim), nn.Tanh()))
# Hidden layer
for _ in range(n_layers - 1):
self.layers.append(GMMConv(n_hidden, n_hidden, dim, n_kernels))
self.pseudo_proj.append(nn.Sequential(nn.Linear(2, dim), nn.Tanh()))
# Output layer
self.layers.append(GMMConv(n_hidden, out_feats, dim, n_kernels))
self.pseudo_proj.append(nn.Sequential(nn.Linear(2, dim), nn.Tanh()))
self.dropout = nn.Dropout(dropout)
def forward(self, feat, pseudo):
h = feat
for i in range(len(self.layers)):
if i != 0:
h = self.dropout(h)
h = self.layers[i](self.g, h, self.pseudo_proj[i](pseudo))
return h
def evaluate(model, features, pseudo, labels, mask):
model.eval()
with torch.no_grad():
logits = model(features, pseudo)
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
data = load_data(args)
g = data[0]
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.to(args.gpu)
features = g.ndata["feat"]
labels = g.ndata["label"]
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_classes
n_edges = g.num_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item(),
)
)
# graph preprocess and calculate normalization factor
g = g.remove_self_loop().add_self_loop()
n_edges = g.num_edges()
us, vs = g.edges(order="eid")
udeg, vdeg = 1 / torch.sqrt(g.in_degrees(us).float()), 1 / torch.sqrt(
g.in_degrees(vs).float()
)
pseudo = torch.cat([udeg.unsqueeze(1), vdeg.unsqueeze(1)], dim=1)
# create GraphSAGE model
model = MoNet(
g,
in_feats,
args.n_hidden,
n_classes,
args.n_layers,
args.pseudo_dim,
args.n_kernels,
args.dropout,
)
if cuda:
model.cuda()
loss_fcn = torch.nn.CrossEntropyLoss()
# use optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
# initialize graph
mean = 0
for epoch in range(args.n_epochs):
model.train()
if epoch >= 3:
t0 = time.time()
# forward
logits = model(features, pseudo)
loss = loss_fcn(logits[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >= 3:
mean = (mean * (epoch - 3) + (time.time() - t0)) / (epoch - 2)
acc = evaluate(model, features, pseudo, labels, val_mask)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
mean,
loss.item(),
acc,
n_edges / mean / 1000,
)
)
print()
acc = evaluate(model, features, pseudo, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MoNet on citation network")
register_data_args(parser)
parser.add_argument(
"--dropout", type=float, default=0.5, help="dropout probability"
)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
parser.add_argument(
"--n-epochs", type=int, default=200, help="number of training epochs"
)
parser.add_argument(
"--n-hidden", type=int, default=16, help="number of hidden gcn units"
)
parser.add_argument(
"--n-layers", type=int, default=1, help="number of hidden gcn layers"
)
parser.add_argument(
"--pseudo-dim",
type=int,
default=2,
help="Pseudo coordinate dimensions in GMMConv, 2 for cora and 3 for pubmed",
)
parser.add_argument(
"--n-kernels",
type=int,
default=3,
help="Number of kernels in GMMConv layer",
)
parser.add_argument(
"--weight-decay", type=float, default=5e-4, help="Weight for L2 loss"
)
args = parser.parse_args()
print(args)
main(args)