forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·230 lines (190 loc) · 6.93 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import dgl
import dgl.function as fn
import dgl.nn as dglnn
import numpy as np
import scipy.sparse as sparse
import torch
import torch.nn as nn
from dgl.base import DGLError
from dgl.nn.functional import edge_softmax
class GraphGRUCell(nn.Module):
"""Graph GRU unit which can use any message passing
net to replace the linear layer in the original GRU
Parameter
==========
in_feats : int
number of input features
out_feats : int
number of output features
net : torch.nn.Module
message passing network
"""
def __init__(self, in_feats, out_feats, net):
super(GraphGRUCell, self).__init__()
self.in_feats = in_feats
self.out_feats = out_feats
self.dir = dir
# net can be any GNN model
self.r_net = net(in_feats + out_feats, out_feats)
self.u_net = net(in_feats + out_feats, out_feats)
self.c_net = net(in_feats + out_feats, out_feats)
# Manually add bias Bias
self.r_bias = nn.Parameter(torch.rand(out_feats))
self.u_bias = nn.Parameter(torch.rand(out_feats))
self.c_bias = nn.Parameter(torch.rand(out_feats))
def forward(self, g, x, h):
r = torch.sigmoid(self.r_net(g, torch.cat([x, h], dim=1)) + self.r_bias)
u = torch.sigmoid(self.u_net(g, torch.cat([x, h], dim=1)) + self.u_bias)
h_ = r * h
c = torch.sigmoid(
self.c_net(g, torch.cat([x, h_], dim=1)) + self.c_bias
)
new_h = u * h + (1 - u) * c
return new_h
class StackedEncoder(nn.Module):
"""One step encoder unit for hidden representation generation
it can stack multiple vertical layers to increase the depth.
Parameter
==========
in_feats : int
number if input features
out_feats : int
number of output features
num_layers : int
vertical depth of one step encoding unit
net : torch.nn.Module
message passing network for graph computation
"""
def __init__(self, in_feats, out_feats, num_layers, net):
super(StackedEncoder, self).__init__()
self.in_feats = in_feats
self.out_feats = out_feats
self.num_layers = num_layers
self.net = net
self.layers = nn.ModuleList()
if self.num_layers <= 0:
raise DGLError("Layer Number must be greater than 0! ")
self.layers.append(
GraphGRUCell(self.in_feats, self.out_feats, self.net)
)
for _ in range(self.num_layers - 1):
self.layers.append(
GraphGRUCell(self.out_feats, self.out_feats, self.net)
)
# hidden_states should be a list which for different layer
def forward(self, g, x, hidden_states):
hiddens = []
for i, layer in enumerate(self.layers):
x = layer(g, x, hidden_states[i])
hiddens.append(x)
return x, hiddens
class StackedDecoder(nn.Module):
"""One step decoder unit for hidden representation generation
it can stack multiple vertical layers to increase the depth.
Parameter
==========
in_feats : int
number if input features
hid_feats : int
number of feature before the linear output layer
out_feats : int
number of output features
num_layers : int
vertical depth of one step encoding unit
net : torch.nn.Module
message passing network for graph computation
"""
def __init__(self, in_feats, hid_feats, out_feats, num_layers, net):
super(StackedDecoder, self).__init__()
self.in_feats = in_feats
self.hid_feats = hid_feats
self.out_feats = out_feats
self.num_layers = num_layers
self.net = net
self.out_layer = nn.Linear(self.hid_feats, self.out_feats)
self.layers = nn.ModuleList()
if self.num_layers <= 0:
raise DGLError("Layer Number must be greater than 0!")
self.layers.append(GraphGRUCell(self.in_feats, self.hid_feats, net))
for _ in range(self.num_layers - 1):
self.layers.append(
GraphGRUCell(self.hid_feats, self.hid_feats, net)
)
def forward(self, g, x, hidden_states):
hiddens = []
for i, layer in enumerate(self.layers):
x = layer(g, x, hidden_states[i])
hiddens.append(x)
x = self.out_layer(x)
return x, hiddens
class GraphRNN(nn.Module):
"""Graph Sequence to sequence prediction framework
Support multiple backbone GNN. Mainly used for traffic prediction.
Parameter
==========
in_feats : int
number of input features
out_feats : int
number of prediction output features
seq_len : int
input and predicted sequence length
num_layers : int
vertical number of layers in encoder and decoder unit
net : torch.nn.Module
Message passing GNN as backbone
decay_steps : int
number of steps for the teacher forcing probability to decay
"""
def __init__(
self, in_feats, out_feats, seq_len, num_layers, net, decay_steps
):
super(GraphRNN, self).__init__()
self.in_feats = in_feats
self.out_feats = out_feats
self.seq_len = seq_len
self.num_layers = num_layers
self.net = net
self.decay_steps = decay_steps
self.encoder = StackedEncoder(
self.in_feats, self.out_feats, self.num_layers, self.net
)
self.decoder = StackedDecoder(
self.in_feats,
self.out_feats,
self.in_feats,
self.num_layers,
self.net,
)
# Threshold For Teacher Forcing
def compute_thresh(self, batch_cnt):
return self.decay_steps / (
self.decay_steps + np.exp(batch_cnt / self.decay_steps)
)
def encode(self, g, inputs, device):
hidden_states = [
torch.zeros(g.num_nodes(), self.out_feats).to(device)
for _ in range(self.num_layers)
]
for i in range(self.seq_len):
_, hidden_states = self.encoder(g, inputs[i], hidden_states)
return hidden_states
def decode(self, g, teacher_states, hidden_states, batch_cnt, device):
outputs = []
inputs = torch.zeros(g.num_nodes(), self.in_feats).to(device)
for i in range(self.seq_len):
if (
np.random.random() < self.compute_thresh(batch_cnt)
and self.training
):
inputs, hidden_states = self.decoder(
g, teacher_states[i], hidden_states
)
else:
inputs, hidden_states = self.decoder(g, inputs, hidden_states)
outputs.append(inputs)
outputs = torch.stack(outputs)
return outputs
def forward(self, g, inputs, teacher_states, batch_cnt, device):
hidden = self.encode(g, inputs, device)
outputs = self.decode(g, teacher_states, hidden, batch_cnt, device)
return outputs