forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
66 lines (52 loc) · 1.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# This file is based on the CompGCN author's implementation
# <https://github.com/malllabiisc/CompGCN/blob/master/helper.py>.
# It implements the operation of circular convolution in the ccorr function and an additional in_out_norm function for norm computation.
import dgl
import torch as th
def com_mult(a, b):
r1, i1 = a[..., 0], a[..., 1]
r2, i2 = b[..., 0], b[..., 1]
return th.stack([r1 * r2 - i1 * i2, r1 * i2 + i1 * r2], dim=-1)
def conj(a):
a[..., 1] = -a[..., 1]
return a
def ccorr(a, b):
"""
Compute circular correlation of two tensors.
Parameters
----------
a: Tensor, 1D or 2D
b: Tensor, 1D or 2D
Notes
-----
Input a and b should have the same dimensions. And this operation supports broadcasting.
Returns
-------
Tensor, having the same dimension as the input a.
"""
return th.fft.irfftn(
th.conj(th.fft.rfftn(a, (-1))) * th.fft.rfftn(b, (-1)), (-1)
)
# identify in/out edges, compute edge norm for each and store in edata
def in_out_norm(graph):
src, dst, EID = graph.edges(form="all")
graph.edata["norm"] = th.ones(EID.shape[0]).to(graph.device)
in_edges_idx = th.nonzero(
graph.edata["in_edges_mask"], as_tuple=False
).squeeze()
out_edges_idx = th.nonzero(
graph.edata["out_edges_mask"], as_tuple=False
).squeeze()
for idx in [in_edges_idx, out_edges_idx]:
u, v = src[idx], dst[idx]
deg = th.zeros(graph.num_nodes()).to(graph.device)
n_idx, inverse_index, count = th.unique(
v, return_inverse=True, return_counts=True
)
deg[n_idx] = count.float()
deg_inv = deg.pow(-0.5) # D^{-0.5}
deg_inv[deg_inv == float("inf")] = 0
norm = deg_inv[u] * deg_inv[v]
graph.edata["norm"][idx] = norm
graph.edata["norm"] = graph.edata["norm"].unsqueeze(1)
return graph