forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
305 lines (262 loc) · 9.66 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import dgl
import dgl.function as fn
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from utils import ccorr
class CompGraphConv(nn.Module):
"""One layer of CompGCN."""
def __init__(
self, in_dim, out_dim, comp_fn="sub", batchnorm=True, dropout=0.1
):
super(CompGraphConv, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.comp_fn = comp_fn
self.actvation = th.tanh
self.batchnorm = batchnorm
# define dropout layer
self.dropout = nn.Dropout(dropout)
# define batch norm layer
if self.batchnorm:
self.bn = nn.BatchNorm1d(out_dim)
# define in/out/loop transform layer
self.W_O = nn.Linear(self.in_dim, self.out_dim)
self.W_I = nn.Linear(self.in_dim, self.out_dim)
self.W_S = nn.Linear(self.in_dim, self.out_dim)
# define relation transform layer
self.W_R = nn.Linear(self.in_dim, self.out_dim)
# self loop embedding
self.loop_rel = nn.Parameter(th.Tensor(1, self.in_dim))
nn.init.xavier_normal_(self.loop_rel)
def forward(self, g, n_in_feats, r_feats):
with g.local_scope():
# Assign values to source nodes. In a homogeneous graph, this is equal to
# assigning them to all nodes.
g.srcdata["h"] = n_in_feats
# append loop_rel embedding to r_feats
r_feats = th.cat((r_feats, self.loop_rel), 0)
# Assign features to all edges with the corresponding relation embeddings
g.edata["h"] = r_feats[g.edata["etype"]] * g.edata["norm"]
# Compute composition function in 4 steps
# Step 1: compute composition by edge in the edge direction, and store results in edges.
if self.comp_fn == "sub":
g.apply_edges(fn.u_sub_e("h", "h", out="comp_h"))
elif self.comp_fn == "mul":
g.apply_edges(fn.u_mul_e("h", "h", out="comp_h"))
elif self.comp_fn == "ccorr":
g.apply_edges(
lambda edges: {
"comp_h": ccorr(edges.src["h"], edges.data["h"])
}
)
else:
raise Exception("Only supports sub, mul, and ccorr")
# Step 2: use extracted edge direction to compute in and out edges
comp_h = g.edata["comp_h"]
in_edges_idx = th.nonzero(
g.edata["in_edges_mask"], as_tuple=False
).squeeze()
out_edges_idx = th.nonzero(
g.edata["out_edges_mask"], as_tuple=False
).squeeze()
comp_h_O = self.W_O(comp_h[out_edges_idx])
comp_h_I = self.W_I(comp_h[in_edges_idx])
new_comp_h = th.zeros(comp_h.shape[0], self.out_dim).to(
comp_h.device
)
new_comp_h[out_edges_idx] = comp_h_O
new_comp_h[in_edges_idx] = comp_h_I
g.edata["new_comp_h"] = new_comp_h
# Step 3: sum comp results to both src and dst nodes
g.update_all(fn.copy_e("new_comp_h", "m"), fn.sum("m", "comp_edge"))
# Step 4: add results of self-loop
if self.comp_fn == "sub":
comp_h_s = n_in_feats - r_feats[-1]
elif self.comp_fn == "mul":
comp_h_s = n_in_feats * r_feats[-1]
elif self.comp_fn == "ccorr":
comp_h_s = ccorr(n_in_feats, r_feats[-1])
else:
raise Exception("Only supports sub, mul, and ccorr")
# Sum all of the comp results as output of nodes and dropout
n_out_feats = (
self.W_S(comp_h_s) + self.dropout(g.ndata["comp_edge"])
) * (1 / 3)
# Compute relation output
r_out_feats = self.W_R(r_feats)
# Batch norm
if self.batchnorm:
n_out_feats = self.bn(n_out_feats)
# Activation function
if self.actvation is not None:
n_out_feats = self.actvation(n_out_feats)
return n_out_feats, r_out_feats[:-1]
class CompGCN(nn.Module):
def __init__(
self,
num_bases,
num_rel,
num_ent,
in_dim=100,
layer_size=[200],
comp_fn="sub",
batchnorm=True,
dropout=0.1,
layer_dropout=[0.3],
):
super(CompGCN, self).__init__()
self.num_bases = num_bases
self.num_rel = num_rel
self.num_ent = num_ent
self.in_dim = in_dim
self.layer_size = layer_size
self.comp_fn = comp_fn
self.batchnorm = batchnorm
self.dropout = dropout
self.layer_dropout = layer_dropout
self.num_layer = len(layer_size)
# CompGCN layers
self.layers = nn.ModuleList()
self.layers.append(
CompGraphConv(
self.in_dim,
self.layer_size[0],
comp_fn=self.comp_fn,
batchnorm=self.batchnorm,
dropout=self.dropout,
)
)
for i in range(self.num_layer - 1):
self.layers.append(
CompGraphConv(
self.layer_size[i],
self.layer_size[i + 1],
comp_fn=self.comp_fn,
batchnorm=self.batchnorm,
dropout=self.dropout,
)
)
# Initial relation embeddings
if self.num_bases > 0:
self.basis = nn.Parameter(th.Tensor(self.num_bases, self.in_dim))
self.weights = nn.Parameter(th.Tensor(self.num_rel, self.num_bases))
nn.init.xavier_normal_(self.basis)
nn.init.xavier_normal_(self.weights)
else:
self.rel_embds = nn.Parameter(th.Tensor(self.num_rel, self.in_dim))
nn.init.xavier_normal_(self.rel_embds)
# Node embeddings
self.n_embds = nn.Parameter(th.Tensor(self.num_ent, self.in_dim))
nn.init.xavier_normal_(self.n_embds)
# Dropout after compGCN layers
self.dropouts = nn.ModuleList()
for i in range(self.num_layer):
self.dropouts.append(nn.Dropout(self.layer_dropout[i]))
def forward(self, graph):
# node and relation features
n_feats = self.n_embds
if self.num_bases > 0:
r_embds = th.mm(self.weights, self.basis)
r_feats = r_embds
else:
r_feats = self.rel_embds
for layer, dropout in zip(self.layers, self.dropouts):
n_feats, r_feats = layer(graph, n_feats, r_feats)
n_feats = dropout(n_feats)
return n_feats, r_feats
# Use convE as the score function
class CompGCN_ConvE(nn.Module):
def __init__(
self,
num_bases,
num_rel,
num_ent,
in_dim,
layer_size,
comp_fn="sub",
batchnorm=True,
dropout=0.1,
layer_dropout=[0.3],
num_filt=200,
hid_drop=0.3,
feat_drop=0.3,
ker_sz=5,
k_w=5,
k_h=5,
):
super(CompGCN_ConvE, self).__init__()
self.embed_dim = layer_size[-1]
self.hid_drop = hid_drop
self.feat_drop = feat_drop
self.ker_sz = ker_sz
self.k_w = k_w
self.k_h = k_h
self.num_filt = num_filt
# compGCN model to get sub/rel embs
self.compGCN_Model = CompGCN(
num_bases,
num_rel,
num_ent,
in_dim,
layer_size,
comp_fn,
batchnorm,
dropout,
layer_dropout,
)
# batchnorms to the combined (sub+rel) emb
self.bn0 = th.nn.BatchNorm2d(1)
self.bn1 = th.nn.BatchNorm2d(self.num_filt)
self.bn2 = th.nn.BatchNorm1d(self.embed_dim)
# dropouts and conv module to the combined (sub+rel) emb
self.hidden_drop = th.nn.Dropout(self.hid_drop)
self.feature_drop = th.nn.Dropout(self.feat_drop)
self.m_conv1 = th.nn.Conv2d(
1,
out_channels=self.num_filt,
kernel_size=(self.ker_sz, self.ker_sz),
stride=1,
padding=0,
bias=False,
)
flat_sz_h = int(2 * self.k_w) - self.ker_sz + 1
flat_sz_w = self.k_h - self.ker_sz + 1
self.flat_sz = flat_sz_h * flat_sz_w * self.num_filt
self.fc = th.nn.Linear(self.flat_sz, self.embed_dim)
# bias to the score
self.bias = nn.Parameter(th.zeros(num_ent))
# combine entity embeddings and relation embeddings
def concat(self, e1_embed, rel_embed):
e1_embed = e1_embed.view(-1, 1, self.embed_dim)
rel_embed = rel_embed.view(-1, 1, self.embed_dim)
stack_inp = th.cat([e1_embed, rel_embed], 1)
stack_inp = th.transpose(stack_inp, 2, 1).reshape(
(-1, 1, 2 * self.k_w, self.k_h)
)
return stack_inp
def forward(self, graph, sub, rel):
# get sub_emb and rel_emb via compGCN
n_feats, r_feats = self.compGCN_Model(graph)
sub_emb = n_feats[sub, :]
rel_emb = r_feats[rel, :]
# combine the sub_emb and rel_emb
stk_inp = self.concat(sub_emb, rel_emb)
# use convE to score the combined emb
x = self.bn0(stk_inp)
x = self.m_conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.feature_drop(x)
x = x.view(-1, self.flat_sz)
x = self.fc(x)
x = self.hidden_drop(x)
x = self.bn2(x)
x = F.relu(x)
# compute score
x = th.mm(x, n_feats.transpose(1, 0))
# add in bias
x += self.bias.expand_as(x)
score = th.sigmoid(x)
return score