forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBGNN.py
539 lines (486 loc) · 17.3 KB
/
BGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import itertools
import time
from collections import defaultdict as ddict
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from catboost import CatBoostClassifier, CatBoostRegressor, Pool, sum_models
from sklearn import preprocessing
from sklearn.metrics import r2_score
from tqdm import tqdm
class BGNNPredictor:
"""
Description
-----------
Boost GNN predictor for semi-supervised node classification or regression problems.
Publication: https://arxiv.org/abs/2101.08543
Parameters
----------
gnn_model : nn.Module
DGL implementation of GNN model.
task: str, optional
Regression or classification task.
loss_fn : callable, optional
Function that takes torch tensors, pred and true, and returns a scalar.
trees_per_epoch : int, optional
Number of GBDT trees to build each epoch.
backprop_per_epoch : int, optional
Number of backpropagation steps to make each epoch.
lr : float, optional
Learning rate of gradient descent optimizer.
append_gbdt_pred : bool, optional
Append GBDT predictions or replace original input node features.
train_input_features : bool, optional
Train original input node features.
gbdt_depth : int, optional
Depth of each tree in GBDT model.
gbdt_lr : float, optional
Learning rate of GBDT model.
gbdt_alpha : int, optional
Weight to combine previous and new GBDT trees.
random_seed : int, optional
random seed for GNN and GBDT models.
Examples
----------
gnn_model = GAT(10, 20, num_heads=5),
bgnn = BGNNPredictor(gnn_model)
metrics = bgnn.fit(graph, X, y, train_mask, val_mask, test_mask, cat_features)
"""
def __init__(
self,
gnn_model,
task="regression",
loss_fn=None,
trees_per_epoch=10,
backprop_per_epoch=10,
lr=0.01,
append_gbdt_pred=True,
train_input_features=False,
gbdt_depth=6,
gbdt_lr=0.1,
gbdt_alpha=1,
random_seed=0,
):
self.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu"
)
self.model = gnn_model.to(self.device)
self.task = task
self.loss_fn = loss_fn
self.trees_per_epoch = trees_per_epoch
self.backprop_per_epoch = backprop_per_epoch
self.lr = lr
self.append_gbdt_pred = append_gbdt_pred
self.train_input_features = train_input_features
self.gbdt_depth = gbdt_depth
self.gbdt_lr = gbdt_lr
self.gbdt_alpha = gbdt_alpha
self.random_seed = random_seed
torch.manual_seed(random_seed)
np.random.seed(random_seed)
def init_gbdt_model(self, num_epochs, epoch):
if self.task == "regression":
catboost_model_obj = CatBoostRegressor
catboost_loss_fn = "RMSE"
else:
if epoch == 0: # we predict multiclass probs at first epoch
catboost_model_obj = CatBoostClassifier
catboost_loss_fn = "MultiClass"
else: # we predict the gradients for each class at epochs > 0
catboost_model_obj = CatBoostRegressor
catboost_loss_fn = "MultiRMSE"
return catboost_model_obj(
iterations=num_epochs,
depth=self.gbdt_depth,
learning_rate=self.gbdt_lr,
loss_function=catboost_loss_fn,
random_seed=self.random_seed,
nan_mode="Min",
)
def fit_gbdt(self, pool, trees_per_epoch, epoch):
gbdt_model = self.init_gbdt_model(trees_per_epoch, epoch)
gbdt_model.fit(pool, verbose=False)
return gbdt_model
def append_gbdt_model(self, new_gbdt_model, weights):
if self.gbdt_model is None:
return new_gbdt_model
return sum_models([self.gbdt_model, new_gbdt_model], weights=weights)
def train_gbdt(
self,
gbdt_X_train,
gbdt_y_train,
cat_features,
epoch,
gbdt_trees_per_epoch,
gbdt_alpha,
):
pool = Pool(gbdt_X_train, gbdt_y_train, cat_features=cat_features)
epoch_gbdt_model = self.fit_gbdt(pool, gbdt_trees_per_epoch, epoch)
if epoch == 0 and self.task == "classification":
self.base_gbdt = epoch_gbdt_model
else:
self.gbdt_model = self.append_gbdt_model(
epoch_gbdt_model, weights=[1, gbdt_alpha]
)
def update_node_features(self, node_features, X, original_X):
# get predictions from gbdt model
if self.task == "regression":
predictions = np.expand_dims(
self.gbdt_model.predict(original_X), axis=1
)
else:
predictions = self.base_gbdt.predict_proba(original_X)
if self.gbdt_model is not None:
predictions_after_one = self.gbdt_model.predict(original_X)
predictions += predictions_after_one
# update node features with predictions
if self.append_gbdt_pred:
if self.train_input_features:
predictions = np.append(
node_features.detach().cpu().data[:, : -self.out_dim],
predictions,
axis=1,
) # replace old predictions with new predictions
else:
predictions = np.append(
X, predictions, axis=1
) # append original features with new predictions
predictions = torch.from_numpy(predictions).to(self.device)
node_features.data = predictions.float().data
def update_gbdt_targets(
self, node_features, node_features_before, train_mask
):
return (
(node_features - node_features_before)
.detach()
.cpu()
.numpy()[train_mask, -self.out_dim :]
)
def init_node_features(self, X):
node_features = torch.empty(
X.shape[0], self.in_dim, requires_grad=True, device=self.device
)
if self.append_gbdt_pred:
node_features.data[:, : -self.out_dim] = torch.from_numpy(
X.to_numpy(copy=True)
)
return node_features
def init_optimizer(
self, node_features, optimize_node_features, learning_rate
):
params = [self.model.parameters()]
if optimize_node_features:
params.append([node_features])
optimizer = torch.optim.Adam(itertools.chain(*params), lr=learning_rate)
return optimizer
def train_model(self, model_in, target_labels, train_mask, optimizer):
y = target_labels[train_mask]
self.model.train()
logits = self.model(*model_in).squeeze()
pred = logits[train_mask]
if self.loss_fn is not None:
loss = self.loss_fn(pred, y)
else:
if self.task == "regression":
loss = torch.sqrt(F.mse_loss(pred, y))
elif self.task == "classification":
loss = F.cross_entropy(pred, y.long())
else:
raise NotImplemented(
"Unknown task. Supported tasks: classification, regression."
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
def evaluate_model(self, logits, target_labels, mask):
metrics = {}
y = target_labels[mask]
with torch.no_grad():
pred = logits[mask]
if self.task == "regression":
metrics["loss"] = torch.sqrt(
F.mse_loss(pred, y).squeeze() + 1e-8
)
metrics["rmsle"] = torch.sqrt(
F.mse_loss(torch.log(pred + 1), torch.log(y + 1)).squeeze()
+ 1e-8
)
metrics["mae"] = F.l1_loss(pred, y)
metrics["r2"] = torch.Tensor(
[r2_score(y.cpu().numpy(), pred.cpu().numpy())]
)
elif self.task == "classification":
metrics["loss"] = F.cross_entropy(pred, y.long())
metrics["accuracy"] = torch.Tensor(
[(y == pred.max(1)[1]).sum().item() / y.shape[0]]
)
return metrics
def train_and_evaluate(
self,
model_in,
target_labels,
train_mask,
val_mask,
test_mask,
optimizer,
metrics,
gnn_passes_per_epoch,
):
loss = None
for _ in range(gnn_passes_per_epoch):
loss = self.train_model(
model_in, target_labels, train_mask, optimizer
)
self.model.eval()
logits = self.model(*model_in).squeeze()
train_results = self.evaluate_model(logits, target_labels, train_mask)
val_results = self.evaluate_model(logits, target_labels, val_mask)
test_results = self.evaluate_model(logits, target_labels, test_mask)
for metric_name in train_results:
metrics[metric_name].append(
(
train_results[metric_name].detach().item(),
val_results[metric_name].detach().item(),
test_results[metric_name].detach().item(),
)
)
return loss
def update_early_stopping(
self,
metrics,
epoch,
best_metric,
best_val_epoch,
epochs_since_last_best_metric,
metric_name,
lower_better=False,
):
train_metric, val_metric, test_metric = metrics[metric_name][-1]
if (lower_better and val_metric < best_metric[1]) or (
not lower_better and val_metric > best_metric[1]
):
best_metric = metrics[metric_name][-1]
best_val_epoch = epoch
epochs_since_last_best_metric = 0
else:
epochs_since_last_best_metric += 1
return best_metric, best_val_epoch, epochs_since_last_best_metric
def log_epoch(
self,
pbar,
metrics,
epoch,
loss,
epoch_time,
logging_epochs,
metric_name="loss",
):
train_metric, val_metric, test_metric = metrics[metric_name][-1]
if epoch and epoch % logging_epochs == 0:
pbar.set_description(
"Epoch {:05d} | Loss {:.3f} | Loss {:.3f}/{:.3f}/{:.3f} | Time {:.4f}".format(
epoch,
loss,
train_metric,
val_metric,
test_metric,
epoch_time,
)
)
def fit(
self,
graph,
X,
y,
train_mask,
val_mask,
test_mask,
original_X=None,
cat_features=None,
num_epochs=100,
patience=10,
logging_epochs=1,
metric_name="loss",
):
"""
:param graph : dgl.DGLGraph
Input graph
:param X : pd.DataFrame
Input node features. Each column represents one input feature. Each row is a node.
Values in dataframe are numerical, after preprocessing.
:param y : pd.DataFrame
Input node targets. Each column represents one target. Each row is a node
(order of nodes should be the same as in X).
:param train_mask : list[int]
Node indexes (rows) that belong to train set.
:param val_mask : list[int]
Node indexes (rows) that belong to validation set.
:param test_mask : list[int]
Node indexes (rows) that belong to test set.
:param original_X : pd.DataFrame, optional
Input node features before preprocessing. Each column represents one input feature. Each row is a node.
Values in dataframe can be of any type, including categorical (e.g. string, bool) or
missing values (None). This is useful if you want to preprocess X with GBDT model.
:param cat_features: list[int]
Feature indexes (columns) which are categorical features.
:param num_epochs : int
Number of epochs to run.
:param patience : int
Number of epochs to wait until early stopping.
:param logging_epochs : int
Log every n epoch.
:param metric_name : str
Metric to use for early stopping.
:param normalize_features : bool
If to normalize original input features X (column wise).
:param replace_na: bool
If to replace missing values (None) in X.
:return: metrics evaluated during training
"""
# initialize for early stopping and metrics
if metric_name in ["r2", "accuracy"]:
best_metric = [np.cfloat("-inf")] * 3 # for train/val/test
else:
best_metric = [np.cfloat("inf")] * 3 # for train/val/test
best_val_epoch = 0
epochs_since_last_best_metric = 0
metrics = ddict(list)
if cat_features is None:
cat_features = []
if self.task == "regression":
self.out_dim = y.shape[1]
elif self.task == "classification":
self.out_dim = len(set(y.iloc[test_mask, 0]))
self.in_dim = (
self.out_dim + X.shape[1] if self.append_gbdt_pred else self.out_dim
)
if original_X is None:
original_X = X.copy()
cat_features = []
gbdt_X_train = original_X.iloc[train_mask]
gbdt_y_train = y.iloc[train_mask]
gbdt_alpha = self.gbdt_alpha
self.gbdt_model = None
node_features = self.init_node_features(X)
optimizer = self.init_optimizer(
node_features, optimize_node_features=True, learning_rate=self.lr
)
y = (
torch.from_numpy(y.to_numpy(copy=True))
.float()
.squeeze()
.to(self.device)
)
graph = graph.to(self.device)
pbar = tqdm(range(num_epochs))
for epoch in pbar:
start2epoch = time.time()
# gbdt part
self.train_gbdt(
gbdt_X_train,
gbdt_y_train,
cat_features,
epoch,
self.trees_per_epoch,
gbdt_alpha,
)
self.update_node_features(node_features, X, original_X)
node_features_before = node_features.clone()
model_in = (graph, node_features)
loss = self.train_and_evaluate(
model_in,
y,
train_mask,
val_mask,
test_mask,
optimizer,
metrics,
self.backprop_per_epoch,
)
gbdt_y_train = self.update_gbdt_targets(
node_features, node_features_before, train_mask
)
self.log_epoch(
pbar,
metrics,
epoch,
loss,
time.time() - start2epoch,
logging_epochs,
metric_name=metric_name,
)
# check early stopping
(
best_metric,
best_val_epoch,
epochs_since_last_best_metric,
) = self.update_early_stopping(
metrics,
epoch,
best_metric,
best_val_epoch,
epochs_since_last_best_metric,
metric_name,
lower_better=(metric_name not in ["r2", "accuracy"]),
)
if patience and epochs_since_last_best_metric > patience:
break
if np.isclose(gbdt_y_train.sum(), 0.0):
print("Node embeddings do not change anymore. Stopping...")
break
print(
"Best {} at iteration {}: {:.3f}/{:.3f}/{:.3f}".format(
metric_name, best_val_epoch, *best_metric
)
)
return metrics
def predict(self, graph, X, test_mask):
graph = graph.to(self.device)
node_features = torch.empty(X.shape[0], self.in_dim).to(self.device)
self.update_node_features(node_features, X, X)
logits = self.model(graph, node_features).squeeze()
if self.task == "regression":
return logits[test_mask]
else:
return logits[test_mask].max(1)[1]
def plot_interactive(
self,
metrics,
legend,
title,
logx=False,
logy=False,
metric_name="loss",
start_from=0,
):
import plotly.graph_objects as go
metric_results = metrics[metric_name]
xs = [list(range(len(metric_results)))] * len(metric_results[0])
ys = list(zip(*metric_results))
fig = go.Figure()
for i in range(len(ys)):
fig.add_trace(
go.Scatter(
x=xs[i][start_from:],
y=ys[i][start_from:],
mode="lines+markers",
name=legend[i],
)
)
fig.update_layout(
title=title,
title_x=0.5,
xaxis_title="Epoch",
yaxis_title=metric_name,
font=dict(
size=40,
),
height=600,
)
if logx:
fig.update_layout(xaxis_type="log")
if logy:
fig.update_layout(yaxis_type="log")
fig.show()