forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loader.py
399 lines (353 loc) · 13.2 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import pickle as pkl
import random
import dgl
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
# Split data into train/eval/test
def split_data(hg, etype_name):
src, dst = hg.edges(etype=etype_name)
user_item_src = src.numpy().tolist()
user_item_dst = dst.numpy().tolist()
num_link = len(user_item_src)
pos_label = [1] * num_link
pos_data = list(zip(user_item_src, user_item_dst, pos_label))
ui_adj = np.array(hg.adj_external(etype=etype_name).to_dense())
full_idx = np.where(ui_adj == 0)
sample = random.sample(range(0, len(full_idx[0])), num_link)
neg_label = [0] * num_link
neg_data = list(zip(full_idx[0][sample], full_idx[1][sample], neg_label))
full_data = pos_data + neg_data
random.shuffle(full_data)
train_size = int(len(full_data) * 0.6)
eval_size = int(len(full_data) * 0.2)
test_size = len(full_data) - train_size - eval_size
train_data = full_data[:train_size]
eval_data = full_data[train_size : train_size + eval_size]
test_data = full_data[
train_size + eval_size : train_size + eval_size + test_size
]
train_data = np.array(train_data)
eval_data = np.array(eval_data)
test_data = np.array(test_data)
return train_data, eval_data, test_data
def process_amazon(root_path):
# User-Item 3584 2753 50903 UIUI
# Item-View 2753 3857 5694 UIVI
# Item-Brand 2753 334 2753 UIBI
# Item-Category 2753 22 5508 UICI
# Construct graph from raw data.
# load data of amazon
data_path = os.path.join(root_path, "Amazon")
if not (os.path.exists(data_path)):
print(
"Can not find amazon in {}, please download the dataset first.".format(
data_path
)
)
# item_view
item_view_src = []
item_view_dst = []
with open(os.path.join(data_path, "item_view.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split(",")
item, view = int(_line[0]), int(_line[1])
item_view_src.append(item)
item_view_dst.append(view)
# user_item
user_item_src = []
user_item_dst = []
with open(os.path.join(data_path, "user_item.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split("\t")
user, item, rate = int(_line[0]), int(_line[1]), int(_line[2])
if rate > 3:
user_item_src.append(user)
user_item_dst.append(item)
# item_brand
item_brand_src = []
item_brand_dst = []
with open(os.path.join(data_path, "item_brand.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split(",")
item, brand = int(_line[0]), int(_line[1])
item_brand_src.append(item)
item_brand_dst.append(brand)
# item_category
item_category_src = []
item_category_dst = []
with open(os.path.join(data_path, "item_category.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split(",")
item, category = int(_line[0]), int(_line[1])
item_category_src.append(item)
item_category_dst.append(category)
# build graph
hg = dgl.heterograph(
{
("item", "iv", "view"): (item_view_src, item_view_dst),
("view", "vi", "item"): (item_view_dst, item_view_src),
("user", "ui", "item"): (user_item_src, user_item_dst),
("item", "iu", "user"): (user_item_dst, user_item_src),
("item", "ib", "brand"): (item_brand_src, item_brand_dst),
("brand", "bi", "item"): (item_brand_dst, item_brand_src),
("item", "ic", "category"): (item_category_src, item_category_dst),
("category", "ci", "item"): (item_category_dst, item_category_src),
}
)
print("Graph constructed.")
# Split data into train/eval/test
train_data, eval_data, test_data = split_data(hg, "ui")
# delete the positive edges in eval/test data in the original graph
train_pos = np.nonzero(train_data[:, 2])
train_pos_idx = train_pos[0]
user_item_src_processed = train_data[train_pos_idx, 0]
user_item_dst_processed = train_data[train_pos_idx, 1]
edges_dict = {
("item", "iv", "view"): (item_view_src, item_view_dst),
("view", "vi", "item"): (item_view_dst, item_view_src),
("user", "ui", "item"): (
user_item_src_processed,
user_item_dst_processed,
),
("item", "iu", "user"): (
user_item_dst_processed,
user_item_src_processed,
),
("item", "ib", "brand"): (item_brand_src, item_brand_dst),
("brand", "bi", "item"): (item_brand_dst, item_brand_src),
("item", "ic", "category"): (item_category_src, item_category_dst),
("category", "ci", "item"): (item_category_dst, item_category_src),
}
nodes_dict = {
"user": hg.num_nodes("user"),
"item": hg.num_nodes("item"),
"view": hg.num_nodes("view"),
"brand": hg.num_nodes("brand"),
"category": hg.num_nodes("category"),
}
hg_processed = dgl.heterograph(
data_dict=edges_dict, num_nodes_dict=nodes_dict
)
print("Graph processed.")
# save the processed data
with open(os.path.join(root_path, "amazon_hg.pkl"), "wb") as file:
pkl.dump(hg_processed, file)
with open(os.path.join(root_path, "amazon_train.pkl"), "wb") as file:
pkl.dump(train_data, file)
with open(os.path.join(root_path, "amazon_test.pkl"), "wb") as file:
pkl.dump(test_data, file)
with open(os.path.join(root_path, "amazon_eval.pkl"), "wb") as file:
pkl.dump(eval_data, file)
return hg_processed, train_data, eval_data, test_data
def process_movielens(root_path):
# User-Movie 943 1682 100000 UMUM
# User-Age 943 8 943 UAUM
# User-Occupation 943 21 943 UOUM
# Movie-Genre 1682 18 2861 UMGM
data_path = os.path.join(root_path, "Movielens")
if not (os.path.exists(data_path)):
print(
"Can not find movielens in {}, please download the dataset first.".format(
data_path
)
)
# Construct graph from raw data.
# movie_genre
movie_genre_src = []
movie_genre_dst = []
with open(os.path.join(data_path, "movie_genre.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split("\t")
movie, genre = int(_line[0]), int(_line[1])
movie_genre_src.append(movie)
movie_genre_dst.append(genre)
# user_movie
user_movie_src = []
user_movie_dst = []
with open(os.path.join(data_path, "user_movie.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split("\t")
user, item, rate = int(_line[0]), int(_line[1]), int(_line[2])
if rate > 3:
user_movie_src.append(user)
user_movie_dst.append(item)
# user_occupation
user_occupation_src = []
user_occupation_dst = []
with open(os.path.join(data_path, "user_occupation.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split("\t")
user, occupation = int(_line[0]), int(_line[1])
user_occupation_src.append(user)
user_occupation_dst.append(occupation)
# user_age
user_age_src = []
user_age_dst = []
with open(os.path.join(data_path, "user_age.dat")) as fin:
for line in fin.readlines():
_line = line.strip().split("\t")
user, age = int(_line[0]), int(_line[1])
user_age_src.append(user)
user_age_dst.append(age)
# build graph
hg = dgl.heterograph(
{
("movie", "mg", "genre"): (movie_genre_src, movie_genre_dst),
("genre", "gm", "movie"): (movie_genre_dst, movie_genre_src),
("user", "um", "movie"): (user_movie_src, user_movie_dst),
("movie", "mu", "user"): (user_movie_dst, user_movie_src),
("user", "uo", "occupation"): (
user_occupation_src,
user_occupation_dst,
),
("occupation", "ou", "user"): (
user_occupation_dst,
user_occupation_src,
),
("user", "ua", "age"): (user_age_src, user_age_dst),
("age", "au", "user"): (user_age_dst, user_age_src),
}
)
print("Graph constructed.")
# Split data into train/eval/test
train_data, eval_data, test_data = split_data(hg, "um")
# delete the positive edges in eval/test data in the original graph
train_pos = np.nonzero(train_data[:, 2])
train_pos_idx = train_pos[0]
user_movie_src_processed = train_data[train_pos_idx, 0]
user_movie_dst_processed = train_data[train_pos_idx, 1]
edges_dict = {
("movie", "mg", "genre"): (movie_genre_src, movie_genre_dst),
("genre", "gm", "movie"): (movie_genre_dst, movie_genre_src),
("user", "um", "movie"): (
user_movie_src_processed,
user_movie_dst_processed,
),
("movie", "mu", "user"): (
user_movie_dst_processed,
user_movie_src_processed,
),
("user", "uo", "occupation"): (
user_occupation_src,
user_occupation_dst,
),
("occupation", "ou", "user"): (
user_occupation_dst,
user_occupation_src,
),
("user", "ua", "age"): (user_age_src, user_age_dst),
("age", "au", "user"): (user_age_dst, user_age_src),
}
nodes_dict = {
"user": hg.num_nodes("user"),
"movie": hg.num_nodes("movie"),
"genre": hg.num_nodes("genre"),
"occupation": hg.num_nodes("occupation"),
"age": hg.num_nodes("age"),
}
hg_processed = dgl.heterograph(
data_dict=edges_dict, num_nodes_dict=nodes_dict
)
print("Graph processed.")
# save the processed data
with open(os.path.join(root_path, "movielens_hg.pkl"), "wb") as file:
pkl.dump(hg_processed, file)
with open(os.path.join(root_path, "movielens_train.pkl"), "wb") as file:
pkl.dump(train_data, file)
with open(os.path.join(root_path, "movielens_test.pkl"), "wb") as file:
pkl.dump(test_data, file)
with open(os.path.join(root_path, "movielens_eval.pkl"), "wb") as file:
pkl.dump(eval_data, file)
return hg_processed, train_data, eval_data, test_data
class MyDataset(Dataset):
def __init__(self, triple):
self.triple = triple
self.len = self.triple.shape[0]
def __getitem__(self, index):
return (
self.triple[index, 0],
self.triple[index, 1],
self.triple[index, 2].float(),
)
def __len__(self):
return self.len
def load_data(dataset, batch_size=128, num_workers=10, root_path="./data"):
if os.path.exists(os.path.join(root_path, dataset + "_train.pkl")):
g_file = open(os.path.join(root_path, dataset + "_hg.pkl"), "rb")
hg = pkl.load(g_file)
g_file.close()
train_set_file = open(
os.path.join(root_path, dataset + "_train.pkl"), "rb"
)
train_set = pkl.load(train_set_file)
train_set_file.close()
test_set_file = open(
os.path.join(root_path, dataset + "_test.pkl"), "rb"
)
test_set = pkl.load(test_set_file)
test_set_file.close()
eval_set_file = open(
os.path.join(root_path, dataset + "_eval.pkl"), "rb"
)
eval_set = pkl.load(eval_set_file)
eval_set_file.close()
else:
if dataset == "movielens":
hg, train_set, eval_set, test_set = process_movielens(root_path)
elif dataset == "amazon":
hg, train_set, eval_set, test_set = process_amazon(root_path)
else:
print("Available datasets: movielens, amazon.")
raise NotImplementedError
if dataset == "movielens":
meta_paths = {
"user": [["um", "mu"]],
"movie": [["mu", "um"], ["mg", "gm"]],
}
user_key = "user"
item_key = "movie"
elif dataset == "amazon":
meta_paths = {
"user": [["ui", "iu"]],
"item": [["iu", "ui"], ["ic", "ci"], ["ib", "bi"], ["iv", "vi"]],
}
user_key = "user"
item_key = "item"
else:
print("Available datasets: movielens, amazon.")
raise NotImplementedError
train_set = torch.Tensor(train_set).long()
eval_set = torch.Tensor(eval_set).long()
test_set = torch.Tensor(test_set).long()
train_set = MyDataset(train_set)
train_loader = DataLoader(
dataset=train_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
)
eval_set = MyDataset(eval_set)
eval_loader = DataLoader(
dataset=eval_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
)
test_set = MyDataset(test_set)
test_loader = DataLoader(
dataset=test_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
)
return (
hg,
train_loader,
eval_loader,
test_loader,
meta_paths,
user_key,
item_key,
)