forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappnp.py
210 lines (187 loc) · 5.63 KB
/
appnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import time
import dgl
import mxnet as mx
import numpy as np
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
from dgl.nn.mxnet.conv import APPNPConv
from mxnet import gluon, nd
from mxnet.gluon import nn
class APPNP(nn.Block):
def __init__(
self,
g,
in_feats,
hiddens,
n_classes,
activation,
feat_drop,
edge_drop,
alpha,
k,
):
super(APPNP, self).__init__()
self.g = g
with self.name_scope():
self.layers = nn.Sequential()
# input layer
self.layers.add(nn.Dense(hiddens[0], in_units=in_feats))
# hidden layers
for i in range(1, len(hiddens)):
self.layers.add(nn.Dense(hiddens[i], in_units=hiddens[i - 1]))
# output layer
self.layers.add(nn.Dense(n_classes, in_units=hiddens[-1]))
self.activation = activation
if feat_drop:
self.feat_drop = nn.Dropout(feat_drop)
else:
self.feat_drop = lambda x: x
self.propagate = APPNPConv(k, alpha, edge_drop)
def forward(self, features):
# prediction step
h = features
h = self.feat_drop(h)
h = self.activation(self.layers[0](h))
for layer in self.layers[1:-1]:
h = self.activation(layer(h))
h = self.layers[-1](self.feat_drop(h))
# propagation step
h = self.propagate(self.g, h)
return h
def evaluate(model, features, labels, mask):
pred = model(features).argmax(axis=1)
accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
return accuracy.asscalar()
def main(args):
# load and preprocess dataset
if args.dataset == "cora":
data = CoraGraphDataset()
elif args.dataset == "citeseer":
data = CiteseerGraphDataset()
elif args.dataset == "pubmed":
data = PubmedGraphDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
ctx = mx.cpu(0)
else:
cuda = True
ctx = mx.gpu(args.gpu)
g = g.to(ctx)
features = g.ndata["feat"]
labels = mx.nd.array(g.ndata["label"], dtype="float32", ctx=ctx)
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_classes
n_edges = data.graph.number_of_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
train_mask.sum().asscalar(),
val_mask.sum().asscalar(),
test_mask.sum().asscalar(),
)
)
# add self loop
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
# create APPNP model
model = APPNP(
g,
in_feats,
args.hidden_sizes,
n_classes,
nd.relu,
args.in_drop,
args.edge_drop,
args.alpha,
args.k,
)
model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar()
loss_fcn = gluon.loss.SoftmaxCELoss()
# use optimizer
print(model.collect_params())
trainer = gluon.Trainer(
model.collect_params(),
"adam",
{"learning_rate": args.lr, "wd": args.weight_decay},
)
# initialize graph
dur = []
for epoch in range(args.n_epochs):
if epoch >= 3:
t0 = time.time()
# forward
with mx.autograd.record():
pred = model(features)
loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
loss = loss.sum() / n_train_samples
loss.backward()
trainer.step(batch_size=1)
if epoch >= 3:
loss.asscalar()
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss.asscalar(),
acc,
n_edges / np.mean(dur) / 1000,
)
)
# test set accuracy
acc = evaluate(model, features, labels, test_mask)
print("Test accuracy {:.2%}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="APPNP")
register_data_args(parser)
parser.add_argument(
"--in-drop", type=float, default=0.5, help="input feature dropout"
)
parser.add_argument(
"--edge-drop", type=float, default=0.5, help="edge propagation dropout"
)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
parser.add_argument(
"--n-epochs", type=int, default=200, help="number of training epochs"
)
parser.add_argument(
"--hidden_sizes",
type=int,
nargs="+",
default=[64],
help="hidden unit sizes for appnp",
)
parser.add_argument(
"--k", type=int, default=10, help="Number of propagation steps"
)
parser.add_argument(
"--alpha", type=float, default=0.1, help="Teleport Probability"
)
parser.add_argument(
"--weight-decay", type=float, default=5e-4, help="Weight for L2 loss"
)
args = parser.parse_args()
print(args)
main(args)