-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathFPSDetect.py
61 lines (58 loc) · 2.52 KB
/
FPSDetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import torch
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression, scale_coords, xyxy2xywh
import warnings
warnings.filterwarnings("ignore")
# 选择设备
device = torch.device('cuda') # 'cuda' if torch.cuda.is_available() else 'cpu')
half = device.type != 'cpu'
# Load model
model = attempt_load('E:\Code\FPSAutomaticAiming\yolov5s.pt', map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
img_size = check_img_size(640, s=stride) # check img_size
if half:
model.half() # to FP16
model.eval()
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, img_size, img_size).to(device).type_as(
next(model.parameters()))) # run once
def detect(img0):
"""
:param img0: 要检测的图像
:return: {'class': cls(目标类型), 'conf': conf(置信分数), 'position': xywh(目标屏幕坐标)}
"""
with torch.no_grad():
# Padded resize
img = letterbox(img0, img_size, stride=stride)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred = model(img, augment=False)[0]
# Apply NMS
pred = non_max_suppression(pred, 0.25, 0.45)
# Process detections
detections = []
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
# Traverse detections
for *xyxy, conf, cls in reversed(det):
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist()
xywh = [round(x) for x in xywh]
xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2],
xywh[3]] # 检测到目标位置,格式:(left,top,w,h)
cls = names[int(cls)]
conf = float(conf)
detections.append({'class': cls, 'conf': conf, 'position': xywh})
return detections