-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathnodes.py
484 lines (404 loc) · 19.1 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import argparse
import os
import folder_paths
comfy_path = os.path.dirname(folder_paths.__file__)
node_path = folder_paths.get_folder_paths("custom_nodes")[0]
import ffmpeg
from datetime import datetime
from pathlib import Path
from typing import List
import subprocess
import av
import numpy as np
import cv2
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from scipy.signal import savgol_filter
from .configs.prompts.test_cases import TestCasesDict
from .src.models.pose_guider import PoseGuider
from .src.models.unet_2d_condition import UNet2DConditionModel
from .src.models.unet_3d import UNet3DConditionModel
from .src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from .src.utils.util import get_fps, read_frames, save_videos_grid
from .src.audio_models.model import Audio2MeshModel
from .src.utils.audio_util import prepare_audio_feature
from .src.utils.mp_utils import LMKExtractor
from .src.utils.draw_util import FaceMeshVisualizer
from .src.utils.pose_util import project_points
from scipy.spatial.transform import Rotation as R
from scipy.interpolate import interp1d
ani_path=f'{node_path}/ComfyUI-AniPortrait'
config_path=f'{ani_path}/configs/prompts/animation_audio.yaml'
inference_config_path=f'{ani_path}/configs/inference/inference_v2.yaml'
audio_inference_config_path=f'{ani_path}/configs/inference/inference_audio.yaml'
audio_path=f'{ani_path}/configs/inference/audio/lyl.wav'
ref_video_path=f'{ani_path}/configs/inference/head_pose_temp/pose_ref_video.mp4'
#print(f'{ani_path}{config_path}{inference_config_path}{audio_inference_config_path}{audio_path}{ref_video_path}')
class AniPortraitLoader:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"sd_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/stable-diffusion-v1-5"}),
"vae_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/sd-vae-ft-mse"}),
"image_encoder_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/sd-image-variations-diffusers/image_encoder"}),
"wav2vec2_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/facebook/wav2vec2-base-960h"}),
"a2m_ckpt": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/ZJYang/AniPortrait/audio2mesh.pt"}),
"motion_module_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/ZJYang/AniPortrait/motion_module.pth"}),
"denoising_unet_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/ZJYang/AniPortrait/denoising_unet.pth"}),
"reference_unet_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/ZJYang/AniPortrait/reference_unet.pth"}),
"pose_guider_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/ZJYang/AniPortrait/pose_guider.pth"}),
"weight_dtype": (["fp16","fp32"], {"default": "fp16"}),
},
}
RETURN_TYPES = ("Pose2VideoPipeline","Audio2MeshModel",)
RETURN_NAMES = ("pipe","a2m_model",)
FUNCTION = "run"
CATEGORY = "AniPortrait"
def run(self,sd_path,vae_path,image_encoder_path,wav2vec2_path,a2m_ckpt,motion_module_path,denoising_unet_path,reference_unet_path,pose_guider_path,weight_dtype):
#print(f'{ani_path}{config_path}{inference_config_path}{audio_inference_config_path}{audio_path}{ref_video_path}')
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=config_path)
parser.add_argument("-W", type=int, default=512)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-L", type=int, default=16)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=25)
parser.add_argument("--fps", type=int, default=30)
#args = parser.parse_args()
args, unknown = parser.parse_known_args()
config = OmegaConf.load(args.config)
OmegaConf.update(config, "pretrained_base_model_path", sd_path)
OmegaConf.update(config, "pretrained_vae_path", vae_path)
OmegaConf.update(config, "image_encoder_path", image_encoder_path)
OmegaConf.update(config, "denoising_unet_path", denoising_unet_path)
OmegaConf.update(config, "reference_unet_path", reference_unet_path)
OmegaConf.update(config, "pose_guider_path", pose_guider_path)
OmegaConf.update(config, "motion_module_path", motion_module_path)
OmegaConf.update(config, "inference_config", inference_config_path)
OmegaConf.update(config, "audio_inference_config", audio_inference_config_path)
OmegaConf.update(config, "weight_dtype", weight_dtype)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
audio_infer_config = OmegaConf.load(config.audio_inference_config)
OmegaConf.update(audio_infer_config, "a2m_model.model_path", wav2vec2_path)
OmegaConf.update(audio_infer_config, "a2p_model.model_path", wav2vec2_path)
OmegaConf.update(audio_infer_config, "pretrained_model.a2m_ckpt", a2m_ckpt)
# prepare model
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
a2m_model.cuda().eval()
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
#inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
return (pipe,a2m_model,)
def matrix_to_euler_and_translation(matrix):
rotation_matrix = matrix[:3, :3]
translation_vector = matrix[:3, 3]
rotation = R.from_matrix(rotation_matrix)
euler_angles = rotation.as_euler('xyz', degrees=True)
return euler_angles, translation_vector
def smooth_pose_seq(pose_seq, window_size=5):
smoothed_pose_seq = np.zeros_like(pose_seq)
for i in range(len(pose_seq)):
start = max(0, i - window_size // 2)
end = min(len(pose_seq), i + window_size // 2 + 1)
smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0)
return smoothed_pose_seq
class AniPortraitRun:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"pipe": ("Pose2VideoPipeline",),
"wav2vec2_path": ("STRING", {"default": "/home/admin/ComfyUI/models/diffusers/facebook/wav2vec2-base-960h"}),
"a2m_model": ("Audio2MeshModel",),
"image": ("IMAGE",),
"pose": ("IMAGE",),
"audio_path": ("STRING",{"default":audio_path}),
"width": ("INT",{"default":512}),
"height": ("INT",{"default":512}),
"video_length": ("INT",{"default":16}),
"steps": ("INT",{"default":25}),
"cfg": ("FLOAT",{"default":3.5}),
"seed": ("INT",{"default":1234}),
"weight_dtype": (["fp16","fp32"], {"default": "fp16"}),
"min_face_detection_confidence": ("FLOAT",{"default":0.5}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "run"
CATEGORY = "AniPortrait"
def run(self,pipe,wav2vec2_path,a2m_model,image,pose,audio_path,width,height,video_length,steps,cfg,seed,weight_dtype,min_face_detection_confidence):
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=config_path)
parser.add_argument("-W", type=int, default=512)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-L", type=int, default=16)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=25)
parser.add_argument("--fps", type=int, default=30)
args, unknown = parser.parse_known_args()
generator = torch.manual_seed(args.seed)
args.W=width
args.H=height
args.L=video_length
args.seed=seed
args.cfg=cfg
args.steps=steps
config = OmegaConf.load(args.config)
OmegaConf.update(config, "inference_config", inference_config_path)
OmegaConf.update(config, "audio_inference_config", audio_inference_config_path)
OmegaConf.update(config, "weight_dtype", weight_dtype)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
audio_infer_config = OmegaConf.load(config.audio_inference_config)
OmegaConf.update(audio_infer_config, "a2m_model.model_path", wav2vec2_path)
OmegaConf.update(audio_infer_config, "a2p_model.model_path", wav2vec2_path)
ref_image = 255.0 * image[0].cpu().numpy()
ref_image_pil = Image.fromarray(np.clip(ref_image, 0, 255).astype(np.uint8))
ref_image_w, ref_image_h = ref_image_pil.size
config = OmegaConf.load(args.config)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}"
#save_dir = Path(f"output/{date_str}/{save_dir_name}")
#save_dir.mkdir(exist_ok=True, parents=True)
lmk_extractor = LMKExtractor(min_face_detection_confidence=min_face_detection_confidence)
vis = FaceMeshVisualizer(forehead_edge=False)
#ref_name = Path(ref_image_path).stem
#audio_name = Path(audio_path).stem
#ref_image_pil = Image.open(ref_image_path).convert("RGB")
ref_image_np = cv2.cvtColor(np.array(ref_image_pil), cv2.COLOR_RGB2BGR)
ref_image_np = cv2.resize(ref_image_np, (args.H, args.W))
face_result = lmk_extractor(ref_image_np)
assert face_result is not None, "No face detected."
print(f'{face_result["lmks"]}')
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
sample = prepare_audio_feature(audio_path, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)
# inference
pred = a2m_model.infer(sample['audio_feature'], sample['seq_len'])
pred = pred.squeeze().detach().cpu().numpy()
pred = pred.reshape(pred.shape[0], -1, 3)
pred = pred + face_result['lmks3d']
trans_mat_list = []
for frame in pose:
frame = 255.0 * frame.cpu().numpy()
frame = Image.fromarray(np.clip(frame, 0, 255).astype(np.uint8))
frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)
frame = cv2.resize(frame, (args.H, args.W))
result = lmk_extractor(frame)
if result is not None and result['trans_mat'] is not None:
trans_mat_list.append(result['trans_mat'].astype(np.float32))
else:
trans_mat_list.append(trans_mat_list[-1])
trans_mat_arr = np.array(trans_mat_list)
# compute delta pose
trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0])
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i]
euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat)
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
total_frames=pose.shape[0]
fps=30
# interpolate to 30 fps
new_fps = 30
old_time = np.linspace(0, total_frames / fps, total_frames)
new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps))
pose_arr_interp = np.zeros((len(new_time), 6))
for i in range(6):
interp_func = interp1d(old_time, pose_arr[:, i])
pose_arr_interp[:, i] = interp_func(new_time)
pose_seq = smooth_pose_seq(pose_arr_interp)
#pose_seq = np.load(config['pose_temp'])
mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]
# project 3D mesh to 2D landmark
projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width])
pose_images = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((width, height), verts, normed=False)
pose_images.append(lmk_img)
pose_list = []
pose_tensor_list = []
print(f"pose video has {len(pose_images)} frames, with {args.fps} fps")
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
for pose_image_np in pose_images[: args.L]:
pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
pose_tensor_list.append(pose_transform(pose_image_pil))
pose_image_np = cv2.resize(pose_image_np, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_tensor_list)
ref_image_tensor = pose_transform(ref_image_pil) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(
0
) # (1, c, 1, h, w)
ref_image_tensor = repeat(
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=video_length
)
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
pose_tensor = pose_tensor.transpose(0, 1)
pose_tensor = pose_tensor.unsqueeze(0)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
args.steps,
args.cfg,
generator=generator,
).videos
'''
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
save_path = f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=3,
fps=args.fps,
)
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(audio_path)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac').run()
os.remove(save_path)
'''
print(f'{video.shape}')
video=video.permute(0, 2, 3, 4, 1)
print(f'{video.shape}')
return video
class MaskList2Video:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
"padding": ("INT",{"defualt":10}),
},
}
RETURN_TYPES = ("IMAGE","BOX",)
FUNCTION = "run"
CATEGORY = "AniPortrait"
OUTPUT_NODE = True
def run(self, image, mask, padding):
from torchvision.ops import masks_to_boxes
boxes = masks_to_boxes(mask)
print(f'{boxes}')
box=[int(torch.min(boxes,dim=0).values[0]),int(torch.max(boxes,dim=0).values[1]),int(torch.min(boxes,dim=0).values[2]),int(torch.max(boxes,dim=0).values[3])]
if box[0]-padding>0:
box[0]=box[0]-padding
else:
box[0]=0
if box[1]-padding>0:
box[1]=box[1]-padding
else:
box[1]=0
if box[2]+padding<image.shape[2]:
box[2]=box[2]+padding
else:
box[2]=image.shape[2]
if box[3]+padding<image.shape[1]:
box[3]=box[3]+padding
else:
box[3]=image.shape[1]
return (image[:,box[1]:box[3],box[0]:box[2],:],box,)
class Box2Video:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"box": ("BOX",),
},
}
RETURN_TYPES = ("IMAGE","BOX",)
FUNCTION = "run"
CATEGORY = "AniPortrait"
OUTPUT_NODE = True
def run(self, image, box):
return (image[:,box[1]:box[3],box[0]:box[2],:],box,)
class CoverVideo:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"bgimage": ("IMAGE",),
"coverimage": ("IMAGE",),
"box": ("BOX",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "run"
CATEGORY = "AniPortrait"
OUTPUT_NODE = True
def run(self, bgimage, coverimage, box):
bgimage[:,box[1]:box[1]+coverimage.shape[1],box[0]:+box[0]+coverimage.shape[2],:]=coverimage
return (bgimage,)
NODE_CLASS_MAPPINGS = {
"AniPortraitLoader":AniPortraitLoader,
"AniPortraitRun":AniPortraitRun,
"MaskList2Video":MaskList2Video,
"Box2Video":Box2Video,
"CoverVideo":CoverVideo,
}