List all model names with:
import pyiqa
print(pyiqa.list_models())
FR Method | Model names | Description |
---|---|---|
TOPIQ | topiq_fr , topiq_fr-pipal |
Proposed in this paper |
AHIQ | ahiq |
|
PieAPP | pieapp |
|
LPIPS | lpips , lpips-vgg , stlpips , stlpips-vgg , lpips+ , lpips-vgg+ |
|
DISTS | dists |
|
WaDIQaM | wadiqam_fr |
|
CKDN1 | ckdn |
|
FSIM | fsim |
|
SSIM | ssim , ssimc |
Gray input (y channel), color input |
MS-SSIM | ms_ssim |
|
CW-SSIM | cw_ssim |
|
PSNR | psnr , psnry |
Color input, gray input (y channel) |
VIF | vif |
|
GMSD | gmsd |
|
NLPD | nlpd |
|
VSI | vsi |
|
MAD | mad |
NR Method | Model names | Description |
---|---|---|
Q-Align | qalign (with quality[default], aesthetic options) |
Large vision-language models |
LIQE | liqe , liqe_mix |
CLIP based method |
ARNIQA | arniqa , arniqa-live , arniqa-csiq , arniqa-tid , arniqa-kadid , arniqa-clive , arniqa-flive , arniqa-spaq |
ARNIQA with different datasets, koniq by default |
TOPIQ | topiq_nr , topiq_nr-flive , topiq_nr-spaq |
TOPIQ with different datasets, koniq by default |
TReS | tres , tres-flive |
TReS with different datasets, koniq by default |
FID | fid |
Statistic distance between two datasets |
CLIPIQA(+) | clipiqa , clipiqa+ , clipiqa+_vitL14_512 ,clipiqa+_rn50_512 |
CLIPIQA(+) with different backbone, RN50 by default |
MANIQA | maniqa , maniqa-kadid , maniqa-pipal |
MUSIQ with different datasets, koniq by default |
MUSIQ | musiq , musiq-spaq , musiq-paq2piq , musiq-ava |
MUSIQ with different datasets, koniq by default |
DBCNN | dbcnn |
|
PaQ-2-PiQ | paq2piq |
|
HyperIQA | hyperiqa |
|
NIMA | nima , nima-vgg16-ava |
Aesthetic metric trained with AVA dataset |
WaDIQaM | wadiqam_nr |
|
CNNIQA | cnniqa |
|
NRQM(Ma)2 | nrqm |
No backward |
PI(Perceptual Index) | pi |
No backward |
BRISQUE | brisque , brisque_matlab |
No backward |
ILNIQE | ilniqe |
No backward |
NIQE | niqe , niqe_matlab |
No backward |
PIQE | piqe |
No backward |
[1] This method use distorted image as reference. Please refer to the paper for details.
[2] Currently, only naive random forest regression is implemented and does not support backward.
Task | Method | Description |
---|---|---|
Color IQA | msswd |
Perceptual color difference metric MS-SWD, ECCV2024, Arxiv, Github |
Face IQA | topiq_nr-face |
TOPIQ model trained with face IQA dataset (GFIQA) |
Underwater IQA | uranker |
A ranking-based underwater image quality assessment (UIQA) method, AAAI2023, Arxiv, Github |
Note: ~
means that the corresponding numeric bound is typical value and not mathematically guaranteed
You can now access the rough output range of each metric like this:
metric = pyiqa.create_metric('lpips')
print(metric.score_range)