This is modified from this repository.
The objective is to augment the GLAC Network for visual storytelling using Graph Convolution Networks.
(Rest of documentation to be updated)
This repository is the implementation of GLAC Net: GLocal Attention Cascading Network for the Visual Storytelling Challenge 2018 as a team SnuBiVtt. Our model got the highest score in the human evaluation of the challenge.
Python 3.6 or 2.7
Pytorch >= 1.0.0
git clone https://github.com/tkim-snu/GLACNet.git
cd GLACNet
pip3 install -r requirements.txt
python3
>>> import nltk
>>> nltk.download('punkt')
>>> exit()
All the images should be resized to 256x256.
python3 resize.py --image_dir [train_image_dir] --output_dir [output_train_dir]
python3 resize.py --image_dir [val_image_dir] --output_dir [output_val_dir]
python3 resize.py --image_dir [test_image_dir] --output_dir [output_test_dir]
python3 build_vocab.py
python3 train.py
1. Download the evaluation tool (METEOR score) for the VIST Challenge
git clone https://github.com/windx0303/VIST-Challenge-NAACL-2018 ../VIST-Challenge-NAACL-2018
sudo apt install default-jdk
python3 eval.py --model_num [my_model_num]
The result.json file will be found in the root directory.
We provide the pretrained model(for Python3).
Please download the link and move to <GLACNet root>/models/
.
@article{Kim2018GLAC,
title={GLAC Net: GLocal Attention Cascading Networks for Multi-image Cued Story Generation},
author={Taehyeong Kim and Min-Oh Heo and Seonil Son and Kyoung-Wha Park and Byoung-Tak Zhang},
journal={CoRR},
year={2018},
volume={abs/1805.10973}
}
MIT License
This repository refer to pytorch tutorial by yunjey.