-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSteadyComFVA.m
339 lines (330 loc) · 14 KB
/
SteadyComFVA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
function [minFlux, maxFlux, minFD, maxFD, GRvector, result, LP] = SteadyComFVA(modelCom, options, varargin)
% Flux variability analysis for community model at community steady-state for a range of growth rates.
% The function is capable of saving intermediate results and continuing from previous results
% if the file path is given in `options.saveFVA`. It also allows switch from single thread to parallel
% computation from intermediate results (but not the other way round).
%
% USAGE:
% [minFlux, maxFlux, minFD, maxFD, GRvector, result, LP] = SteadyComFVA(modelCom, options, parameter, 'param1', value1, 'param2', value2, ...)
%
% INPUT:
% modelCom: A community COBRA model structure with the following fields (created using `createMultipleSpeciesModel`)
% (the first 5 fields are required, at least one of the last two is needed. Can be obtained using `getMultiSpecisModelId`):
%
% * S - Stoichiometric matrix
% * b - Right hand side
% * c - Objective coefficients
% * lb - Lower bounds
% * ub - Upper bounds
% * infoCom - structure containing community reaction info
% * indCom - the index structure corresponding to `infoCom`
%
% OPTIONAL INPUTS:
% options: struct with the following possible fields:
%
% * optGRpercent - A vector of percentages. Perform FVA at these percents of max. growth rate (Default = [99.99])
% * optBMpercent - Only consider solutions that yield at least a certain percentage of the optimal biomass (Default = 99.99)
% * rxnNameList - List of reactions (index row vector or subset of `*.rxns`) for which FVA is performed.
% (Default = biomass reaction of each species)
% Or a :math:`(N_{rxns} + N_{organism}) x K` matrix for FVA of `K` linear combinations of fluxes and/or abundances
% e.g., `[1; -2; 0]` for finding the max/min of :math:`1 v_1 - 2 v_2 + 0 v_3`
% * rxnFluxList - List of reactions (index vector or subset of `*.rxns`) whose fluxes are
% also returned along with the FVA result of each entry in `rxnNameList`
% (Default = biomass reaction of each species)
% * GRmax - maximum growth rate of the model (default to be found `SteadyCom.m`)
% (the two parameters below are usually determined by solving the problem during the program.
% Provide them only if you want to constrain the total biomass to a particular value)
% * BMmaxLB - lower bound for the total biomass (default 1)
% * BMmaxUB - upper bound for the total biomass (other parameters below)
% * saveFVA - If non-empty, become the filename to save the FVA results
% (default empty, not saving)
% * saveFre - save frequency. Save every `(#rxns for FVA) * saveFre` (default 0.1)
% * threads - for parallelization: > 1 for explicitly stating the no. of threads used,
% 0 or -1 for using all available threads. Default 1.
% (Requires Matlab parallel toolbox)
% * verbFlag - Verbose output. 1 to have waitbar, >1 to have stepwise output (default 3)
% * loadModel - (`ibm_cplex` only) String of filename to be loaded. If non-empty, load the cplex
% model ('loadModel.mps'), basis ('loadModel.bas') and parameters ('loadModel.prm').
% (May add also other parameters in `SteadyCom` for calculating the maximum growth rate.)
%
% parameter: structure for solver-specific parameters.
% 'param1', value1, ... name-value pairs for `solveCobraLP` parameters. See `solveCobraLP` for details
%
% OUTPUTS:
% minFlux: Minimum flux for each reaction
% maxFlux: Maximum flux for each reaction
%
% OPTIONAL OUTPUTS:
% minFD: :math:`rxnFluxList * rxnNameList` matrix containing the fluxes in `options.rxnFluxList`
% corresponding to minimizing each reaction in `options.rxnNameList`
% maxFD: :math:`rxnFluxList * rxnNameList` matrix containing the fluxes in `options.rxnFluxList`
% corresponding to maximizing each reaction in `options.rxnNameList`
% GRvector: a vector of growth rates at which FVA has been performed
% result: result structure from `SteadyCom`
% LP: `LP` problem structure (`Cplex LP` object for `ibm_cplex`)
[modelCom, ibm_cplex, feasTol, solverParams, parameters] = SteadyComSubroutines('initialize', modelCom, varargin{:});
% Initialization above
if nargin < 2 || isempty(options)
options = struct();
end
% handle solveCobraLP name-value arguments that are specially treated in SteadyCom functions
[options, varargin] = SteadyComSubroutines('solveCobraLP_arg', options, parameters, varargin);
% get SteadyCom paramters. If a required parameter is in options, get its value, else equal to the
% default value in SteadyComSubroutines('getParams') if there is. Otherwise an empty matrix.
[GRmax, optGRpercent, rxnNameList, rxnFluxList, ...
GRfx, BMmaxLB, BMmaxUB, ...
verbFlag, loadModel, saveFVA, threads] = SteadyComSubroutines('getParams', ...
{'GRmax', 'optGRpercent', 'rxnNameList', 'rxnFluxList',...
'GRfx','BMmaxLB','BMmaxUB', ...
'verbFlag', 'loadModel','saveFVA','threads'}, ...
options, modelCom);
[m, n] = size(modelCom.S); % model size
nSp = numel(modelCom.indCom.spBm); % number of organisms
nRxnSp = sum(modelCom.indCom.rxnSps > 0); % number of organism-specific rxns
if ischar(rxnNameList)
rxnNameList = {rxnNameList};
end
if iscell(rxnNameList) || (min(size(rxnNameList)) == 1 && size(rxnNameList, 1) < n)
nRxnFVA = numel(rxnNameList);
else
nRxnFVA = size(rxnNameList, 2);
end
if ischar(rxnFluxList)
rxnFluxList = {rxnFluxList};
end
addRow = false;
GRgiven = false;
if isempty(GRmax)
% get maximum growth rate
[sol, result, LP] = SteadyCom(modelCom, options, varargin{:});
if strcmp(result.stat,'infeasible')
% infeasible model
warning('The model is infeasible.');
[minFlux, maxFlux] = deal(NaN(nRxnFVA, 1));
[minFD, maxFD] = deal(NaN(numel(rxnFluxList), nRxnFVA));
GRvector = NaN(numel(optGRpercent), 1);
return
end
GRmax = result.GRmax;
if ibm_cplex
idRow = size(LP.Model.A, 1); % row that constrains the total biomass
else
idRow = size(LP.A, 1); % row that constrains the total biomass
end
else
% if GRmax is given, BMmaxLB and BMmaxUB should be included in options in this case to ensure feasibility
if ibm_cplex && ~isempty(loadModel)
% load Cplex model if loadModel is given
LP = Cplex('SteadyComFVA');
LP.readModel([loadModel '.mps']);
LP.readBasis([loadModel '.bas']);
LP.readParam([loadModel '.prm']);
LP.DisplayFunc = [];
fprintf('Load model ''%s'' successfully.\n', loadModel);
addRow = true;
if size(LP.Model.A, 1) > m + 2 * nRxnSp + nSp
%try to find the row that constrains total biomass
[ynRow, idRow] = ismember(sparse(ones(nSp, 1), (n + 1) : (n + nSp), ones(nSp, 1), 1, n + nSp),...
LP.Model.A((m + 2 * nRxnSp + nSp + 1):end, 1:(n + nSp)),'rows');
if ynRow
idRow = m + 2 * nRxnSp + nSp + idRow;
end
addRow = ~ynRow;
end
else
% get the LP structure using SteadyCom
options2 = options;
options2.LPonly = true;
[~, ~, LP] = SteadyCom(modelCom, options2, varargin{:});
addRow = true; % no constraint on total biomass using LPonly option
end
result = struct('GRmax',GRmax,'vBM',[],'BM',[],'Ut',[],'Ex',[],'flux',[],'iter0',[],'iter',[],'stat','optimal');
GRgiven = true;
end
if addRow
% add a row for constraining the sum of biomass if not exist
if ibm_cplex
LP.addRows(BMmaxLB, sparse(ones(1, nSp), (n + 1) : (n + nSp), ones(1, nSp), 1, size(LP.Model.A, 2)), BMmaxUB, 'UnityBiomass');
idRow = size(LP.Model.A, 1);
else
LP.A = [LP.A; sparse([ones(nSp, 1); 2 * ones(nSp, 1)], repmat((n + 1):(n + nSp), 1, 2),...
ones(nSp * 2, 1), 2, size(LP.A, 2))];
LP.b = [LP.b; BMmaxUB; BMmaxLB];
LP.csense = [LP.csense, 'LG'];
idRow = size(LP.A, 1);
end
else
% using BMmaxLB and BMmaxUB stored in the LP if not given in options
if ~isfield(options,'BMmaxLB') % take from LP if not supplied
if ibm_cplex
BMmaxLB = LP.Model.lhs(idRow);
else
BMmaxLB = LP.b(idRow);
end
end
if ~isfield(options,'BMmaxUB') % take from LP if not supplied
if ibm_cplex
BMmaxUB = LP.Model.rhs(idRow);
else
BMmaxUB = LP.b(idRow - 1);
end
end
% not allow the max. biomass to exceed the one at max growth rate,
% can happen if optBMpercent < 100. May dismiss this constraint or
% manually supply BMmaxUB in the options if sum of biomass should be variable
if ibm_cplex
LP.Model.lhs(idRow) = BMmaxLB;
LP.Model.rhs(idRow) = BMmaxUB;
else
LP.b(idRow) = BMmaxLB;
LP.b(idRow - 1) = BMmaxUB;
end
end
if ibm_cplex
LP = setCplexParam(LP, solverParams); % set Cplex parameters
% update the LP to ensure the current growth rate is constrained
LP.Model.A = SteadyComSubroutines('updateLPcom', modelCom, GRmax, GRfx, [], LP.Model.A, []);
LP.Model.sense = 'minimize';
LP.Model.obj(:) = 0;
LP.solve();
dev = checkSolFeas(LP);
else
% update the LP to ensure the current growth rate is constrained
LP.A = SteadyComSubroutines('updateLPcom', modelCom, GRmax, GRfx, [], LP.A, []);
LP.c(:) = 0;
LP.osense = 1;
sol = solveCobraLP(LP, varargin{:});
dev = checkSolFeas(LP, sol);
if isfield(sol, 'basis')
LP.basis = sol.basis; % reuse basis
end
end
% check and adjust for feasibility
% (LP from SteadyCom should pass this automatically as the row has been added in SteadyComCplex)
kBMadjust = 0;
while ~(dev <= feasTol) && kBMadjust < 10
kBMadjust = kBMadjust + 1;
% relax the required sum of biomass
if ibm_cplex
LP.Model.lhs(idRow) = BMmaxLB * (1 - feasTol/(11 - kBMadjust));
LP.solve();
dev = checkSolFeas(LP);
else
LP.b(idRow) = BMmaxLB * (1 - feasTol/(11 - kBMadjust));
sol = solveCobraLP(LP, varargin{:});
dev = checkSolFeas(LP, sol);
if isfield(sol, 'basis')
LP.basis = sol.basis; % reuse basis
end
end
if verbFlag
fprintf('BMmax adjustment: %d\n', kBMadjust);
end
end
if ~(dev <= feasTol) % dev can be NaN, which still means infeasibility. So use ~(dev <= feasTol) instead of dev > feasTol
warning('Model not feasible.')
[minFlux, maxFlux] = deal(NaN(nRxnFVA, numel(optGRpercent)));
[minFD, maxFD] = deal(NaN(numel(rxnFluxList), nRxnFVA, numel(optGRpercent)));
GRvector = NaN(numel(optGRpercent), 1);
result.stat = 'infeasible';
return
end
if GRgiven
% assign result structure if in the rare case of given growth rate
if ibm_cplex
flux = LP.Solution.x;
else
flux = sol.full;
end
result.vBM = flux(modelCom.indCom.spBm);
result.BM = flux(n+1:n+nSp);
% two different types of indexing
if size(modelCom.indCom.EXcom, 2) == 2
% uptake and excretion reactions separated
result.Ut = flux(modelCom.indCom.EXcom(:,1));
result.Ex = flux(modelCom.indCom.EXcom(:,2));
else
% uptake and excretion in one exchange reaction
[result.Ut, result.Ex] = deal(flux(modelCom.indCom.EXcom(:,1)));
result.Ut(result.Ut > 0) = 0;
result.Ut = -result.Ut;
result.Ex(result.Ex < 0) = 0;
end
result.flux = flux(1:n);
end
% update BMmaxLB and BMmaxUB for FVA at each given growth rate
if ~isfield(options, 'BMmaxLB')
if ibm_cplex
options.BMmaxLB = LP.Model.lhs(idRow);
else
options.BMmaxLB = LP.b(idRow);
end
end
if ~isfield(options, 'BMmaxUB')
if ibm_cplex
options.BMmaxUB = LP.Model.rhs(idRow);
else
options.BMmaxUB = LP.b(idRow - 1);
end
end
GRvector = GRmax * optGRpercent / 100;
if ~isempty(saveFVA)
% decide number of digits in the save name
if numel(optGRpercent) == 1
kDisp = 2;
else
d = min(GRvector(2:end) - GRvector(1:end-1));
if d < 1
kDisp = abs(floor(log10(abs(d))));
else
kDisp = 0;
end
end
directory = strsplit(saveFVA,filesep);
if numel(directory) > 1
% not saving in the current directory. Create the directory.
directory = strjoin([{pwd}, directory(1:end-1)],filesep);
if ~exist(directory, 'dir')
mkdir(directory);
end
end
if ibm_cplex
LPmodel = LP.Model; % the Cplex dynamic object is not good for saving
LPstart = LP.Start;
save([saveFVA '_model.mat'], 'LPmodel', 'LPstart', 'options', 'solverParams', 'parameters');
clear LPmodel LPstart
else
save([saveFVA '_model.mat'], 'LP', 'options', 'solverParams', 'parameters');
end
end
[minFlux, maxFlux] = deal(zeros(nRxnFVA, numel(GRvector)));
[minFD, maxFD] = deal(zeros(numel(rxnFluxList), nRxnFVA, numel(GRvector)));
%parallel computation
try
p = gcp('nocreate');
if isempty(p)
if threads > 1
%given explicit no. of threads
parpool(ceil(threads));
elseif threads ~= 1
%default max no. of threads (input 0 or -1 etc)
parpool;
end
end
catch
%No parallel pool existent
end
%perform FVA at each growth rate
for j = 1:numel(GRvector)
optionsJ = options;
optionsJ.GR = GRvector(j);
if ~isempty(saveFVA)
optionsJ.saveFVA = sprintf(['%s_GR%.' num2str(kDisp) 'f'], saveFVA, GRvector(j));
end
[minFluxJ,maxFluxJ,minFDj,maxFDj,LP] = SteadyComFVAgr(modelCom,optionsJ, LP, varargin{:});
minFlux(:, j) = minFluxJ;
maxFlux(:, j) = maxFluxJ;
minFD(:,:, j) = minFDj;
maxFD(:,:, j) = maxFDj;
end
end